C. Numericals

Question 1.

The length, breadth and height of a water tank are $5 \, \text{m}$, $2.5 \, \text{m}$ and $1.25 \, \text{m}$ respectively. Calculate the capacity of the water tank in (a) $\, \text{m}^3$ (b) litre.

Answer:

Given.

Length (1) = 5m

Breadth (b) = 2.5 m

and Height (h) = 1.25 m

(a) Volume of water tank in $m^3 = l \times b \times h$

 $= 5m \times 2.5 m \times 1.25 m$

 $= 15.625 \text{ m}^3$

(b) Volume of water tank in litre = 15.625×1000

= 15625 litre

Question 2.

A solid silver piece is immersed in water contained in a measuring cylinder. The level of water rises from 50 ml to 62 ml. Find the volume of silver piece.

Answer:

Given, initial level of water .v1 = 50 ml

Final level of water v2 = 62 ml

Volume of silver piece $V = v_2 - v_1$

= 62 ml - 50 ml

= 12 ml or 12 cm3

Question 3.

Find the volume of a liquid present in a dish of dimensions 10 cm x 10 cm x 5 cm.

Answer:

Volume of water = Length × breadth × height

- = 10 cm × 10 cm × 5 cm
- = 500 cm³ or 500 ml.

Question 4.

A rectangular field is of length 60 m and breadth 35 m. Find the area of the field.

Answer:

Length of a rectangular field = 60 m

Breadth of rectangular field = 35 m

- : Area = 60 m × 35 m
- $= 2100 \text{ m}^2$

Question 6.

A piece of brass of volume 30 cm3 has a mass of 252 g. Find the density of brass in (i) g cm3, (ii) kg m3.

Answer:

Ans. Given, Mass
$$M = 252 \text{ g}$$

Volume $V = 30 \text{ cm}^3$

(i) Density
$$d = \frac{M}{V} = \frac{252}{30 \text{ cm}^3}$$

= 8.4 g cm⁻³

(ii) Since,
$$M = 252 \text{ g} = 0.252 \text{ kg}$$

 $V = 30 \text{ cm}^3 = 30 \times 10^{-6} \text{ m}^3$

Density
$$d = \frac{0.252 \text{ kg}}{30 \times 10^{-6} \text{ m}^3} = \frac{0.252 \text{ kg}}{30 \times \frac{1}{1000000} \text{ m}^3}$$

= $\frac{0.252 \times 10000000 \text{ kg}}{30 \text{ m}^3} = \frac{25200}{3} \text{ kg m}^{-3}$
= 8400 kg m⁻³

Question 7.

The mass of an iron ball is 312 g. The density of iron is 7.8 g cm⁻³. Find the volume of the ball.

Answer:

Given, Mass M = 312 g
Density
$$d = 7.8 \text{ g cm}^{-3}$$

Since,
$$d = \frac{M}{V} \implies V = \frac{M}{d}$$

Hence, volume of an iron ball
$$V = \frac{312}{7.8} = 40 \text{ cm}^3$$

Question 8.

A cork has a volume 25 cm³. The density of cork is 0.25 g cm⁻³. Find the mass of cork.

Answer:

Given, density
$$d = 0.25 \text{ g cm}^{-3}$$

V = 25 cm³

From relation
$$d = \frac{M}{V} \implies M = d \times V$$

= 0.25 \times 25
= 6.25 g

Question 9.

The mass of 5 litre of water is 5 kg. Find the density of water in g cm⁻³.

Answer:

Given, Mass
$$M = 5 \text{ kg} = 5000 \text{ g}$$

Volume $V = 5 \text{ litre} = 5000 \text{ cm}^3$

Density of water
$$d = \frac{M}{V}$$

$$=\frac{5000 \text{ g}}{5000 \text{ cm}^3} = 1 \text{ g cm}^{-3}$$