Question 10.

A cubical tank of side 1 m is filled with 800 kg of a liquid. Find: (i) the volume of tank, (ii) the density of liquid in kg m⁻³.

Answer:

(i) Volume of a cube = side \times side \times side

$$side = 1 m$$

- \therefore volume = 1 m × 1 m × 1 m = 1 m³
- (ii) Density of liquid in kg m⁻³ = $\frac{\text{Mass (M)}}{\text{Volume (V)}}$

$$Mass = 800 \text{ kg}$$

Volume =
$$1 \text{ m}^3$$

:. Density =
$$\frac{800}{1 \text{ m}^3}$$
 kg = 800 kg m⁻³

Question 11.

A block of iron has dimensions $2 \text{ m} \times 0.5 \text{ m} \times 0.25 \text{ m}$. The density of iron is 7.8 g cm^{-3} . Find the mass of block.

Answer:

 $b = 0.5 \, \text{m}$

$$h = 0.25 \text{ m}$$

Density of iron =
$$7.8 \text{ g cm}^{-3} = 7.8 \times 1000 \text{ kg m}^{-3} = 7800 \text{ kg m}^{-3}$$

Volume of block =
$$l \times b \times h$$

$$= 2 \times 0.5 \times 0.25 = 0.25 \text{ m}^3$$

From relation
$$d = \frac{M}{V}$$

 \therefore Mass of iron block $M = V \times d$

$$= 0.25 \times 7800 \text{ kg m}^{-3}$$

$$= 1950 \text{ kg}$$

Question 12.

The mass of a lead piece is 115 g. When it is immersed into a measuring cylinder, the water level rises from 20 ml mark to 30 ml mark.

Find:

- (i) the volume of the lead piece,
- (ii) the density of the lead in kg m-3.

Answer:

Ans. Given,
$$M = 115 \text{ g}$$

 $V_1 = 20 \text{ ml}$, $V_2 = 30 \text{ ml}$
(i) Volume of lead piece $V_1 = V_2 - V_3$

(i) Volume of lead piece
$$V = V_2 - V_1$$

= 30 ml - 20 ml
= 10 ml or 10 cm³ [:: 1 ml = 1 cm³]

(ii) Density of lead piece
$$d = \frac{M}{V}$$

$$= \frac{115}{10 \text{ cm}^3} = 11.5 \text{ g cm}^{-3}$$
(since. 1 g cm⁻³ = 1000 kg⁻³)

$$= 11.5 \times 1000 = 11500 \text{ kg m}^{-3}$$

Question 13.

The density of copper is 8.9 g cm⁻³. What will be its density in kg m⁻³?

Answer:

Density of copper
$$d = 8.9 \text{ g cm}^{-3}$$

= $8.9 \times 1000 \text{ kg m}^{-3}$
[: 1 g cm⁻³ = 1000 kg m⁻³]
= 8900 kg m^{-3}

Question 14.

A car travels a distance of 15 km in 20 minute. Find the speed of the car in (i) km h⁻¹, (ii) m s⁻¹.

Answer:

Distance travelled by car =15 km

Time taken = 20 minutes

(i) Speed of car in km h⁻¹

Convert 20 minutes to hour

1 minute =
$$\frac{1}{60}$$
 hour

$$\therefore 20 \text{ minutes} = \frac{1 \times 20}{60} = \frac{1}{3} \text{ hour}$$

Speed of car =
$$\frac{\text{Distance}}{\text{Time taken}}$$

$$= \frac{15 \text{ km}}{\frac{1}{3} \text{ h}}$$

$$= 15 \text{ km} \times 3 \text{ h}^{-1} = 45 \text{ km h}^{-1} = 45 \text{ km h}^{-1}$$

(ii) Speed of car in m s-1

Convert 15 km into metres

$$1 \text{ km} = 1000 \text{ m}$$

$$15 \text{ km} = 1000 \times 15 = 15000 \text{ m}$$

...(i)

...(ii)

Convert minutes into seconds

1 minutes = 60 sec.

20 minutes =
$$60 \times 20 = 1200$$
 sec

Speed of car =
$$\frac{15000 \text{ m}}{1200 \text{ sec}}$$

= 12.5 m s⁻¹

Question 15.

How long a train will take to travel a distance of 200 km with a speed of 60 km h⁻¹?

Answer:

Distance covered by train = 200 km Speed of train = 60 km h⁻¹

We know speed =
$$\frac{\text{Distance}}{\text{Time}}$$

$$\Rightarrow 60 = \frac{200}{\text{Time}}$$

Time =
$$\frac{200}{60}$$
 = $\frac{20}{6}$ = $\frac{10}{3}$ hours
= $3\frac{1}{3}$ hours = $3h + \frac{1}{3}$ hours
= $3h + \frac{1}{3} \times 60$ min
= $3h + 20$ min
= $3h + 20$ min

Question 16.

A boy travels with a speed of 10 m s⁻¹ for 30 minute. How much distance does he travel?

Answer:

Speed of boy = 10 m s⁻¹

Time taken = 30 minutes

speed = distance travelled / time taken

Distance travelled = Speed × Time taken

Convert 30 minutes to seconds

1 minute = 60 sec

30 minute 60 × 30 = 1800 seconds

Putting the value of speed and time we get

Distance travelled = 10 ms⁻¹ × (1800 sec) = 18000 m

= 18000 metre or 18 km Ans.

Question 17.

Express 36 km h⁻¹ in m s⁻¹

Answer:

$$36 \text{ km h}^{-1} = \frac{36 \times 1000 \text{ m}}{60 \times 60}$$
$$= 10 \text{ m s}^{-1}$$

Question 18.

Express 15 m s⁻¹ in km h⁻¹.

Answer:

$$1 \text{ metre } = \frac{1}{1000} \text{ km}$$

15 metre =
$$\frac{15}{1000}$$
 km

$$1 \text{ second} = \frac{1}{3600} \text{ hr}$$

Here, Distance =
$$\frac{15}{1000}$$
 km

Time taken =
$$\frac{1}{3600}$$
 hr.

$$Speed = \frac{Distance}{Time taken}$$

$$=\frac{\frac{15}{1000}}{\frac{1}{3600}} = \frac{15}{1000} \times \frac{3600}{1}$$

$$= 54 \text{ km h}^{-1}$$