Principles of Object

Oriented Programming

By now you must have used several software packages to do a particular
task. You must have observed that you cannot do anything beyond
whatever the software is intended for. How about creating a software
that will make the computer do what you want it to do? This can be done

with the help of a program.

A program is a set of instructions given to the computer to perform a
particular task. Such programs or collection of programs make/makes a
<oftware. But there is one problem, the instructions that you give to the
computer should be givenin alanguage that the machine understands. Now
the machine understands only one language called the binary language.
The binary language consists of 1's and 0's which is very difficult for us,
humans, to understand and learn. As every instruction that you give to the
computer should be a combination of 1's and 0's, it is difficult to learn as
we are already accustomed to letters of the alphabet and words.

Therefore, the scientists thought of building computer languages (called
High-Level Language) that are more English-like, independent of the
hardware and is therefore, easier to learn. One such computer language
is Java. However, once the program is written using Java, it needs to
be translated into Machine Language. This is done with a specialised
software called the Translator. A translator comes in two varieties, i.e.,
Interpreter and Compiler. Whatever may be the variety, its main purpose
is to convert the program into machine language. Although the technology
behind the Java language is highly complex and you will learn it in the

coming years, presently you are going to learn programming using Java

at a preliminary level.
Difference Between Procedure Oriented and Object
Oriented Language

When it comes to programming you nee
the syntax (or grammar) of that language. A set

d 1o key in some instructions

into an editor abiding by

A program is a set of
instructions given to ti
computer to perform

particular task.

A high-level languag
a programming lang

that is closer to hu

languages, a
which programs ar

written that are mor

A procedur

Langu

wrogram -
‘ g 4.‘?}!",:; a f\?'f“r"

well-struct

st
pmtodmcs wit

pmgmnn

age is a “‘i}f‘

ons A
e {steps d

ning context

yWIT 3
\mpose 3 Progral

@

A e
mlng k«mg‘-"‘g i

of

d

hin its

to

n

of wntternt 2 e and
code. Y ou can Wil ¢ e
bvrfnrm the rask untt

¢ o writing ¢

of writing.

come

When 1
methodologies
upon the task

methodologies e
gramming an

are used ¢

Oriented Pro

r Languages are

Compute ‘
. Procedure

methodologm
ivided into sma

{o |‘)P d ' |
s. This increase

or function
program. Howe

the data upon whic
on the other hand, emp

developed in such a way that
anything that has certal
much better ha
of software solutions.

The following table shows some

1 program there are
The choice of the

Spcciﬁca]ly designed accordip,
Oriented Languages allow 4 |,
[ler programs that are also cglle
s the maintainability and reusahfi,
yer, more emphaSiS is given t'o th(? [)rm;(;dlm:"
h the pmcedure works. Object Oriente
hasises data over a procedure, Progray,
they represent an object. Ap M@J
1 characteristics and behaviour. Thig ”fs.u'h;

re-write it suiLA LOUE and Mal R TS -
' . AK ¢
jesired task is attained. thy

Vﬂri()uS

; 81y
m"”‘“d(,j,, Wl

. language involved. Preseny Y g,
an(l 'h" a f” y 'W() ‘"7!«

V(‘r

develop a software, y, o
) amely o, "y

1 Object Oriented lf’mgrumming | "fu;uzl;

LT

¥
Re

ti[h
d l’“n;,.(-‘h:
rji’

by
d]‘a”i-’Ue«,

At

ndling of the program with respect to present requimm’,‘

of the basic differences |y,

Procedure Oriented Language and Object Oriented Language,

Procedure Oriented Programming
A large program is divided into smaller
segments or procedures.

More importance is given to the program
rather than the data.

It follows top down approach.

Here freely from
procedure to procedure in the system.

data can move

A'dding new data and procedure is
difficult in a program.

It doe
}t' rﬁlocs not have any proper way for
iding data so it is less secure

Fxamples
amples of Procedure Oriented

languag«-g are: (0 7 <
¢ . iy \ B "]
P'IS{"'!L v ! P()R'I RA\

Concept of Objects

In this world We see seye
SILIS an ex; i gk
IS an example of 4p object. The

Object Oriented Programming

A program is represented as an objeo

More importance is given to the d
rather than the program.

It follows bottom up approach.
Here objects can move and communic

with each other through memb
functions.

It provides an easy procedure 10 @
data and procedure to a progran.

It provides Data Hiding, therel
providing more security.

Example of Object Oriented lang?aﬂ*‘
are: C4 4 JAVA. VB.NET, ()#,\LT-

Ie N invte v {
al objects around us. The chair on whic""

computer where you work upo"”

example of an object. The pen that you use for writing is also an example

of an object. Even we ourselves are examples of objects. The objects that

you see around yourself may be living or non-living. Whatever may be the

situation you will always find two unique features of an object, namely',
characteristics and behaviour. For example, a car, its characteristics is
represented by its colour, its length and breadth, number of people that
(‘an‘sit. the wheel radius, and its behaviour is the speed, how fast it can
go from one place to another, the amount of steering control it can have,
whether the drive is smooth or not, etc.

The book that you are reading now is also an example of an object.
Its characteristics is represented by the information it holds, size,
volume and its colour. The behavioural aspect comprises the methods
for accessing the information it contains. For example, you can open the
book, turn a page, read a paragraph, and search the table of contents,
and so on. The information contained in the book along with the methods
for accessing all the information is what comprises the object known as

this book:.

Trying to read this book will require some sort of light source, which may
be the open sunshine or by a electrical bulb or just a lamp. The lamp may
also be considered to be an object. Apart from its usual characteristics
and behaviour, it also contains information about its state. The state of an
object is the particular condition it is in. For example, a lamp can be on or
off. The lamp's switch (method) is used to turn the lamp on and to turn it
off to access the state of the lamp.

This book, too, has state information. It may be either in open or closed
state. While being open, it can be turned to a particular page. The pages
by itself are objects in their own right. They contain information and
can be accessed through the Contents method. The book object can be
viewed as being composed of page objects. The book's methods provide
access to pages, and the page methods provide access to the information
contained on a particular page. Thus, the behaviour aspect of an object
contains methods that change the state of an object or provide a usage

of the object.

So. we can define an object as an entity with certain characteristics and
behaviour. All objects have their own individuality and are distinguishable.
For example, you may have two identical pens with the same colour,
texture, shape and size, yet they are two distinguishable pens. Similarly,
there may be several copies of this book, but each holds a separate
identity. For example, the book may be kept open with someone, open
to a certain page with someone or open to a different page with someone.

Princinlee of Obiect Oriented Proaramminag

An object is an entit)
certain characteristi
behaviour.

o

—

‘\mﬂ‘\ o i

I
dlye,
T ‘ i i l
Phus. ! yesented through the value %/'m”hu'h o Y
« It ' | i
b {1 h“
wen pomnt of time. |
1 K

sls promoles unde
 using objects | lers) iding |

yooptamining of
Prog practic al basis for computer ’"'l']' M

yd prov wles @

Object oriented Programming

a process by which we give ingp,, for

'L“‘f

ing 1s
l‘“‘ fc"""“ i ‘

: particular rask. There are different tuhnulu
AR L .

mvolved 0 writing a program. One such ’”hnu{m is (J‘
}'mgr.nmuing.

Obyect Onented Programming (or O()P). Is a technique of
programs which are organized as a co-interactive collect:
cach of which represents an instance of a class. A /qs; (.

of objects with similar properties, common behayioy; .

relationships. Figure 1.1 shows a class diagram (left) and 1, . ‘,
inght) described by it. Objects Amit Mitra, Anu Mitra, <n

with their ages are instances of class Person.

(Person) (Person)
N Amit Mitra Anu Mitra 3
2 18 years 14 years
v \/
I8 Obi:{ cts

' The person class and its objects
Anothe
]

Ldn g

Fexample will hel
and (,},]”‘s I
s'l“‘"‘? cl;
“VETY Inisy
I "#"h

”‘5§

P you to understand the Hl"“
€t us imagine a class (or group) ™

138 defines the side length and colour prop®’
ance (g object) of the
andd 1u|mu P

(IH
e of the

I'he

'“l" lly l ()r e Xclllll)l(‘. ‘“] “]\l l'lx ¢

ire SUL
areof e ngth 5 units and red in colout
s"l“ll‘(‘ m;

ay be of length 7 units and hlu

5T Y]

iy wE b
e (4

>SCTie

Square will be repro

L l

- TR, . R0

Thus, through the OOP technique it is possible to represent objects
having characteristics and behaviour. It forms a powerful techniqﬁe to
represent objects as in the real world. The characteristics of an object are
represented through data members and behaviour is represented through
member functions in programming world.

Characteristics of 00P

Object Oriented Programming (OOP) is based upon certain principles.
This section describes the principles of OOP:

® Abstraction
® Encapsulation
® Polymorphism

® [nheritance
Abstraction

Abstraction refers to the art of hiding the complexities and giving a simple T —

interface. For example in a car, for a layman, it is good enough to know of Object Oriented
driving. Hardly will he know the intricacies of the movement of the Programming (OOP) that
. th Line of the elecirical and elrctromnt ts. What hides certain details and
engine, or the working of the electric L and electronic components. Wha hasleb e
he will know or will be interested with, is the steering for turning, the features of the object.

accelerator for speed, gear for power and the switches. This is because
he has been given a simple interface and the complexity of the car
engine movement has been kept completely hidden from him. Thus he
doesn't bother upon the intricacies of the car's engine movement, but
concentrates on driving. This is what is required for programming; all
the complexities should be encapsulated in such a way, that a simpler
interface is given and henceforth the programmer can carry on with the
development process at a higher level.

However, abstraction is the selective examination of certain aspects of
a problem. The goal of abstraction is to isolate those aspects that are
important for some purpose and suppress or hide those aspects that are
unimportant. Abstraction must always be for some purpose, because
the purpose determines what is and is not important. Many different
abstractions of the same thing are possible, depending on the purpose

for which they are made.

For example, a simple switchboard that is used in your room, is an
abstraction. Imagine if the concept of switchboard did not exist. You Bk absatenzion T fa
would find a great number of wires hanging around your room. To start reduction of a particular
an appliance, you would need to join two wires. But essentially you need bodyofdatatoa

- A simplified representation

to know which group of wires should be joined to start the appliance. prese-papy

ool wires, More
«@. more the number
\lnn*n\« ’

the wites to start an .\pph.mu‘, H\us‘ | A
MN"M\ hut mav also prove fatal as G A% Safer ‘
““”'"\‘"”'5 '_"‘ installs a swutchboard thay CoONneeg Cag)
the (-l(\pt‘l 1 lwl". just enough to know tor the user 1o s
switch, So, s n . !
the apphance,

Sumilarlv, when a nider doves a bike, the emal o,
Similarly,

levation, mileage. ete. hardly concerns him. 1, 2
aceeten . e

‘ 3 . "“\’ ‘ “l
\1”\‘“}:. "(\ l\"('\\‘\ (h((Ulll'\l’ll(A N

. Wop,
LN (‘I(‘!‘.‘llt‘ the l\ikn “”(-‘\
N b | A} ¢ N,
that pushing the break helps 1o stop the hike. and able s
' ’ . \ N B w
switches that put on the hgh(S. cte. Thus the absty

\l(“i\‘” (\f”‘(\ LN

ln‘ .
£ B ‘ A\
the ider only concentrate on riding the hike vather),

AN “n\{
mternal complevities.,

N
However, abstraction is relative 1o (he conteyy

\\f lh(‘]\\\\,1.,.
purpose

(e
or l'(‘qnll‘t‘nwm‘]“m.(
actions or leyels of

It changes in accordance to the

.
car produces several absir abstractiog N
of the car, some of the

A R
Ly

abstractions are:

® Steering position, hpe (Power Steering or not. shape and g,

® Accelerator position, its smoothness and the SPeed of g
that the car can gain,

® The brake system. which can Stop the car and how fas

]

The head lights. their position and power that can give 4
at night.

Stmilarly for e Maimntenanee mcharge of (he car, the followm,
abstractions:

* The engine “apacity and life.

® The wheey alignmen, Ype. status, ete.

®* The coolants, engine ol Status, eqe.

* The mileage ASpect, which s essential for oil conser atior
Encapsulat:on

act of enclosing

‘ container. In sotiw.
ation l‘hi“';l\“(‘l"i\\‘tl(‘s and !h?\
l*islit\\‘ 18 rbprps(\n“‘d Vv daka and ¥he)
methods. Thus encapst
A imagy tion and data inio o v
and * & Protectiy e
“Tapper. T, W

et 1o he ares enis
datg ¢ ' wrapper that j o

. J.C“,'_‘”;\\‘

d by some other code det ‘
’ A L IRR

: S < 3 TN

3 thL\ to the real “M.!‘d. consider @

It encapsulates several wires for different electrical or electronic

appliances. You. as the user. have only one method of affecting this

complex encapsulation: by switching on a particular switch, which

in turn will start a particular appliance connected to it and not any
other appliance. This same idea can be applied to programming.
The power of encapsulated code is that everyone knows how to access
it and thus can use it regardless of its implementation details —and

without fear of unexpected side effects.

Encapsulation is also frequently confused with abstraction, since the
two concepts are closely related. Abstraction is a process of hiding the
complexity and giving a simple interface. Encapsulation on the other
hand is the mechanism by which the abstraction is implemented.

Consider this real world example. A company wants to setup a huge
building. The details regarding the materials that would be used for the
construction (i.e.. bricks. cement, iron rods, wood, etc.), type of work,
manager of the company. number of floors, design of the building, cost
of the building. etc.. can be classified as Abstraction. Whereas, the type
of bricks used. who all work for which departments and how they will
work. cost of each and every element in the building, etc., comes under
Encapsulation. Thus the term Abstraction is used to define the outer
lavout used in terms of design and the term Encapsulation is used to
define the inner layout used in terms of implementation.

Polymorphism
Polymorphism is an Object

Before defining the term polymorphism let us begin with an example. Oriented Principle that
enables an object to take

. on many forms. Thus we
corner of the room there comes a screeching sound. The mouse, the _— perzormasingle aetior

cat and the dog all immediately turn towards the direction of the sound. by different ways.
The dog barks. the cat twitches its tail and the mouse sniffs the air.
Thus. vou can see. for the same screeching sound, the animals behave
differently. So. the animals behaved differently for the same effect.

This is exactly what polymorphism is.

Sav in a room stand a mouse, a cat and a dog. Now from the far

Here ic another example. Shobha is a married woman and the mother
of 2 children. She has a teaching job. She is a women first, teacher
in a school when she is at school, someone's wife at home, mother of
her children and obviously someone's daughter. Thus, you can see
that Shobha plays different roles at different times, and that is what
polymorphism is.

The term Polymorphism is actually a combination of two terms Poly and

Morphism. Here the term Poly-means many and Morphism means forms.

{ a method or 2 function ¢
7 a >

[t 18
[n Obje
many me
of specific beh

Ty 0 : aSSume di

the ability od Programming, this refers the o i,
iented Fre

ctOrien

iy, ™
ds of the same name, but eacl, S fesp "
thod aviour as it has different formg, ™"

have
“P(\
Zeritance : :
| Inher A vou must have seen inheritance As the -
tance a1 ~onted world YO) 1 1St] e
i Object Oriente : In real an object is able to inherit charactensch angp
ning that allows A et
S obecreated | Suggests biect. In more concrete terms, an objec ;o ah
S manestngdass. | another o 13 H.riour to its children. For inheritan, to
| state and behav L. :
slatz o have characteristics in common with each
need to

l ehaLlr‘)
“log

W()l‘k [h ‘
Other,

Itis basically a term that is used to represent hierarcp;,
t1s

al Telg,
generalization.

For example, let's say we make a class .called "Humap'
our physical characteristics. It's a generic class that coy
me or anyone in the world. Its state kee
legs, number of arms, and blood type.
and walk. "Human" is good for getting
all the same but it can't, for Instance,

Forthatwe'dneed to make tw
(fig. 1.3). The state and be
each other ip 5 lot of

ld Tepre,
ps track of thing |, iy
It has behavigyrs like ey
an overall sense of what
tell me ahouyt gender diff
onew classtypes called "Map" and"T;

haviours of these two classes will diff:

ways except for the ones that they inher
"Human"
nheritance allows 3|
members of one class I
0 be the Mmembers of
another class.
Man wo—
Figure 1.3 Man i
Th and Woman inherit traits from Human class
erefore] i .
2, nhentan e
behaviours into j ¢ allows S to encompass the pare!! | the
. s chj . 208
hehaviours to chilq, The child ¢lass can then extc :

g refle : The mos

ASpect of this | Ct the dlfferen(:es it represents. [he mo*
: ‘onc

\["‘('lalized . cept

P ,lzlr\‘ b
: , to Temember g that the child ¢
rSlOn ()f the par

i
ot

Here -

i

a’,
Jam™

I
|

®Xamp) ; "n

Ple, Reneralization of the term joted "

a Cveals . 1) an’

o fvels of Sub-generalizations as dtiatimb‘m
3 =y ¢ A reld

clagg: M thay g used to establish !

- Slﬁ('ilh'on

e s

b

Dogs Cats ligers
v i
‘ Siberian Royal Bengal
Budl Dog Alsatian Tiger Tiger

1 4: The Mammal hierarchy

Inheritance enforces generalization, thus helping in categorically
identifving the relationship between each levels of inheritance.
For example. the Bull Dog and Alsatian are some popular breeds of Dogs
(generalization), similarly the Siberian Tiger and Royal Bengal Tiger are
some breeds of Tiger (generalization). The Dog, Cats and Tigers are
again a generalization of a generic Mammal.

In OOP the technique of Inheritance is generally used for facilitating
reusability. For example, a developer after modeling a system, tries to
group similar classes together and reuses common code. Often code is
available from past work, which the developer can reuse and modify,
where necessary, to get the precise desired behaviour. Thus inheritance
also reduces the hazard of rewriting a code, simplifying the task of a

developer.

Recapitulation

£ Aprogram is a set of instructions given to the computer to perform a particular task.

1)

A program written in a text editor or any editor is also called a source code.

13}

programming context to compose a program.

PEA

A procedure Oriented Language specifies a series of well-structured steps and procedures within its

Object Oriented Programming (or OOP) is a technique of implementing programs which are organized as

a co-interactive collection of objects, each of which represents an instance of a class.

An object is an entity with certain characteristics and behaviour.

s

Il The characteristics of an object in programming is represented by data members and the behaviour of an

object is represented by member functions.,

& The four principles of Object Oriented Programming are: Abstraction, Encapsulation, Polymorphism and

inheritance.

£ Hiding the ¢ omplexity and giving a simple interface is called Abstraction.

Principles of Object Onented Programming

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

