
Objects and Classes

OO Programming Concepts
Creating Objects and Object Reference

Variables
Differences between primitive data type and

object type
Automatic garbage collection

Constructors
Modifiers (public, private and static)
 Instance and Class Variables and Methods
Scope of Variables
Use the this Keyword

OO Programming Concepts

data field 1

method n

data field n

method 1

An object

...

...

State

Behavior

Data Field
radius = 5

Method
findArea

A Circle object

Class and Objects

circle1: Circle

radius = 2

new Circle()

circlen: Circle

radius = 5

new Circle()

...

UML Graphical notation for classes

UML Graphical notation
for objects

Circle

radius: double

findArea(): double

UML Graphical notation for fields

UML Graphical notation for methods

Class Declaration

class Circle {
double radius = 1.0;

double findArea(){
return radius * radius * 3.14159;

}
}

Declaring Object Reference
Variables
ClassName objectReference;

Example:

Circle myCircle;

Creating Objects

objectReference = new ClassName();

Example:

myCircle = new Circle();

The object reference is assigned to the object reference variable.

Declaring/Creating Objects
in a Single Step

ClassName objectReference = new ClassName();

Example:
Circle myCircle = new Circle();

Differences between variables of
primitive Data types and object types

1

c: Circle

radius = 1

Primitive type int i = 1 i

Object type Circle c c reference

Created using
new Circle()

Copying Variables of Primitive
Data Types and Object Types

1

c1: Circle

radius = 5

Primitive type assignment
i = j

Before:

i

2j

2

After:

i

2j

Object type assignment
c1 = c2

Before:

c1

c2

After:

c1

c2

c2: Circle

radius = 9

Garbage Collection

As shown in the previous figure, after the assignment statement c1 = c2, c1 points to
the same object referenced by c2. The object previously referenced by c1 is no
longer useful. This object is known as garbage. Garbage is automatically collected by
JVM.

Garbage Collection, cont

TIP: If you know that an
object is no longer needed, you
can explicitly assign null to a
reference variable for the
object. The Java VM will
automatically collect the space
if the object is not referenced
by any variable.

Accessing Objects

 Referencing the object’s data:

objectReference.data

myCircle.radius

 Invoking the object’s method:

objectReference.method

myCircle.findArea()

Constructors

Circle(double r) {
radius = r;

}

Circle() {
radius = 1.0;

}

myCircle = new Circle(5.0);

Constructors are a
special kind of
methods that are
invoked to
construct objects.

Constructors, cont.

A constructor with no parameters
is referred to as a default
constructor.

• Constructors must have the
same name as the class itself.

• Constructors do not have a
return type—not even void.

• Constructors are invoked using
the new operator when an object is
created. Constructors play the

Visibility Modifiers and
Accessor Methods
By default, the class, variable, or data can be
accessed by any class in the same package.

 public

The class, data, or method is visible to any class in any package.

 private

The data or methods can be accessed only by the declaring class.
The get and set methods are used to read and modify private

properties.

Example 6.4
Using the private Modifier and
Accessor Methods

TestCircleWithAccessors Run

In this example, private data are used for the
radius and the accessor methods getRadius and
setRadius are provided for the clients to retrieve
and modify the radius.

Passing Objects to Methods

 Passing by value (the value is the reference to the object)

Example 6.5 Passing Objects as Arguments

TestPassingObject Run

Passing Objects to Methods, cont.

main
method

Reference myCircle

5 n 5

times

printAreas
method

Reference

c

myCircle: Circle

radius = 1

Pass by value (here the value is 5)

Pass by value (here the value is the
reference for the object)

Instance
Variables, and Methods

Instance variables belong to a specific instance.

Instance methods are invoked by an instance of
the class.

Class Variables, Constants,
and Methods

Class variables are shared by all the
instances of the class.

Class methods are not tied to a specific
object.

Class constants are final variables shared by
all the instances of the class.

Class Variables, Constants,
and Methods, cont.

To declare class variables, constants, and
methods, use the static modifier.

Class Variables, Constants,
and Methods, cont.

CircleWithStaticVariable

-radius
-numOfObjects

+getRadius(): double
+setRadius(radius: double): void
+getNumOfObjects(): int
+findArea(): double

1 radius circle1:Circle

-radius = 1
-numOfObjects = 2

instantiate

instantiate

Memory

2

5 radius

numOfObjects

radius is an instance
variable, and
numOfObjects is a
class variable

UML Notation:
 +: public variables or methods
 -: private variables or methods
 underline: static variables or metods

circle2:Circle

-radius = 5
-numOfObjects = 2

Example 6.6
Using Instance and Class Variables and
Method

Objective: Demonstrate the roles
of instance and class variables
and their uses. This example adds
a class variable numOfObjects to
track the number of Circle
objects created.

TestCircleWithStaticVariable Run

Scope of Variables

The scope of instance and class variables
is the entire class. They can be declared
anywhere inside a class.

 The scope of a local variable starts from
its declaration and continues to the end
of the block that contains the variable. A
local variable must be declared before it
can be used.

The Keyword this

 Use this to refer to the current object.

 Use this to invoke other constructors of the object.

	Objects and Classes
	OO Programming Concepts
	Class and Objects
	Class Declaration
	Declaring Object Reference Variables
	Creating Objects
	Declaring/Creating Objects�in a Single Step
	Differences between variables of �primitive Data types and object types�
	Copying Variables of Primitive Data Types and Object Types
	Garbage Collection
	Garbage Collection, cont
	Accessing Objects
	Constructors
	Constructors, cont.
	Visibility Modifiers and �Accessor Methods
	Example 6.4�Using the private Modifier and Accessor Methods
	Passing Objects to Methods
	Passing Objects to Methods, cont.
	Instance � Variables, and Methods �
	Class Variables, Constants, �and Methods
	Class Variables, Constants, �and Methods, cont.
	Class Variables, Constants, �and Methods, cont.
	Example 6.6�Using Instance and Class Variables and Method
	Scope of Variables
	The Keyword this

