VIVA VOCE QUESTIONS WITH ANSWERS

- Q.1. Name the gas having
 - (a) Rotten egg odour
 - (b) Smell of burning sulphur
 - (c) Brown coloured gas
 - (d) Basic in nature
 - (e) Acidic in nature
 - (f) Forms at time of lightning
 - (g) Constituents of urea
 - (h) Formed at nascent stage in aqua regia
 - (i) Anhydride of sulphuric acid
 - (j) Most electronegative among all gases.
- Ans. (a) H₂S (b) SO₂ (c) NO₂ (d) NH₃
 - (e) CO₂ (f) NO (g) NH₃ and CO₂
 - (h) nascent chlorine (i) SO₃ (j) fluorine
- Q.2. State the colour of the solution of
 - (a) Ferric salt
 - (b) Ferrous salt
 - (c) Copper salt
 - (d) NO turning acidified ferrous sulphate
 - (e) Nessler's reagant when ammonia is passed
- Ans. (a) Brown (b) Dirty green (c) Blue
 - (d) Brown (e) Brown
- Q.3. This question is related to flame test.
 - (a) Why is platinum wire used?
 - (b) Type of flame employed.

- (c) Glass rod cannot be used.
- (d) Colour of (1) Na+ ion (2) K+ ion.
- Ans. (a) It is not attacked by conc. HCl.
 - (b) Non-luminous flame
 - (c) Glass rod contains Na⁺ and K⁺ which impart their own colour.
 - (d) (1) Golden yellow
 - (2) Lilac
- Q.4. Name the following:
 - (a) Gas turning alkaline pyrogallol solution brown.
 - (b) Gas burns with pop sound.
 - (c) Two metallic radicals which do not respond to ring test.
 - (d) Covalent gas which behaves as good electrical conductor in aqueous solution.
 - (e) Base used as an antacid.
 - (f) Indicator not showing any colour change in acidic medium.
 - (g) Acid used for cooking.
 - (h) One part of nitric acid and three parts of conc. hydrochloric acid.
 - (i) Explosive formed when ammonia reacts with excess of chlorine.
 - (j) Reacts with iron to give ferric chloride.
 - (k) Reacts with iron to give ferrous chloride.
- Ans. (a) Oxygen (b) Hydrogen (c) Calcium nitrate and barium nitrate (d) HCl
 - (e) Magnesium hydroxide (f) Phenolphatalein (g) Acetic acid (h) Aqua regia
 - (i) Nitrogen trichloride (j) Chlorine
 - (k) Hydrochloric acid

- Q.5. Name the following:
 - (a) Two gases which turn lime water milky.
 - (b) Two black-coloured oxidising agents.
 - (c) Two lead salts which oxidise HCl to Cl₂.
 - (d) Chemical name of deep blue solution when excess NH₄OH is added Cu(OH)₂ ppt.
 - (e) Formula of Nessler's Reagent.
- Ans. (a) SO₂ and CO₂
 - (b) MnO₂ and CuO
 - (c) PbO₂ and Pb₃O₄
 - (d) Tetraammine copper hydroxide
 - (e) K2HgI4
- Q.6. Name the following:
 - (a) A metallic sulphide soluble in water.
 - (b) Acid prepared by catalytic oxidation of ammonia.
 - (c) A reddish gas formed when nitric acid comes in contact with air.
 - (d) A non-metallic element which formsa neutral and an acidic oxide.
 - (e) An insoluble salt formed by a reaction between and metal and a non-metal.
- (f) Gas turning lead acetate paper black.
- Ans. (a) Sodium sulphide
 - (b) Nitric acid
 - (c) Nitrogen dioxide
 - (d) Carbon or nitrogen

- (e) Zinc sulphide
- (f) Hydrogen sulphide
- Q.7. Complete the following equations and balance them:
 - (a) $BaCl_2 + H_2SO_4 \longrightarrow$
 - (b) $AgNO_3 + HCl \longrightarrow$
 - (c) $MnO_2 + HCl$ (conc.) \longrightarrow
 - (d) CuO + HCl (conc.) \longrightarrow
 - (e) KI + Cl₂ \longrightarrow
 - (f) $Cu(NO_3) + NaOH \longrightarrow$
 - (g) $Fe(NO_3)_2 + NaOH \longrightarrow$
 - (h) $FeCl_3 + NH_4OH \longrightarrow$
 - (i) $NH_4Cl + NaOH \longrightarrow$
 - (j) Pb $(OH)_2$ + NaOH \longrightarrow
- Ans. (a) $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl$
 - (b) $AgNO_3 + HCl \longrightarrow AgCl + HNO_3$
 - (c) $MnO_2 + 4HC1$ (conc.) $\longrightarrow MnCl_2 + 2H_2O + Cl_2$
 - (d) CuO + 2HCl \longrightarrow CuCl₂ + H₂O
 - (e) $2KI + Cl_2 \longrightarrow 2KCl + I_2$
 - (f) $Cu(NO_3)_2 + 2NaOH \longrightarrow 2NaNO_3 + Cu(OH)_2$
 - (g) $Fe(NO_3)_2 + 2NaOH \longrightarrow 2NaNO_3 + Fe(OH)_2$
 - (h) $FeCl_3 + 3NH_4OH \longrightarrow 3NH_4Cl$
 - + Fe(OH)₃
 - (i) $NH_4Cl + NaOH \longrightarrow NaCl + H_2O$
 - + NH₃
- (j) $Pb(OH)_2 + 2NaOH \longrightarrow Na_2PbO_2 + 2H_2O$

PRACTICE TEST

- (a) Name the experiment which demonstrates extreme solubility of two gases.
 - (b) Name the two gases.
 - (c) State one difference in their observation.
 - (d) Account for the difference in (c).
 - (e) Write down the reaction between the gases.
- 2. Write the equation for the preparation of:
 - (i) Nitric acid from potassium nitrate.
 - (ii) Hydrogen chloride from sodium chloride.
 - (iii) Ammonia from magnesium nitride.
 - (iv) Ammonia from sal ammoniac.
- 3. State what is observed when:
 - (a) Hydrochloric acid is added to silver nitrate solution.
 - (b) Nitric acid is kept in a glass bottle for a long time.

- (c) Rubber and cork fittings are used in the laboratory preparation of HNO₃.
 - (d) Hydrogen chloride is brought in contact with moist air.
 - (e) Dilute HNO₃ accidentally falls on the skin.
 - 4. Show by balanced equation the action of strong heat on the following:
 - (a) KNO₃ $\xrightarrow{\Delta}$
 - (b) $Zn(NO_3) \xrightarrow{\Delta}$
 - (c) AgNO₃ $\xrightarrow{\Delta}$
 - (d) $NH_4NO_3 \xrightarrow{\Delta}$
 - (e) $NH_4NO_2 \xrightarrow{\Delta}$
 - 5. The following reactions are carried out:

A: Aluminium + gas $X \longrightarrow Compound Y$

 $B: Y + boiling water \longrightarrow Ammonia + compound Z$

 $C: Ammonia + CuO \longrightarrow metal K + water + gas J$

- (a) Complete the reactions for A, B and C.
- (b) Identify the substances X, Y, Z, K and J.
- 6. Complete the following reactions:
 - (a) $CaCO_3 + HCl$ (dil.) \longrightarrow
 - (b) Mg (HSO₃)₂ + HCl (dil.) \longrightarrow
 - (c) PbS + HCl (dil.) \longrightarrow
 - (d) $NH_3 + Cl_2$ (excess) \longrightarrow
 - (e) NH₃ (excess) + $Cl_2 \longrightarrow$
 - (f) Mg + HNO₃ (very dil.) \longrightarrow
 - (g) Fe + NO₃ (conc.) \longrightarrow
 - (h) PbO + NH₃ \longrightarrow
 - (i) $NH_4OH + H_2SO_4 \longrightarrow$
 - (j) $CaOCl_2 + NH_3 \longrightarrow$
 - (k) $NH_3 + HNO_3 \longrightarrow$
 - (l) CuO + H_2SO_4 (dil.) \longrightarrow
- 7. Concentrated HNO₃ and concentrated H₂SO₄ can oxidise (a) metals, (b) nonmetals, and (c) inorganic compounds. Write two balanced equations each for both the acids for each of (a), (b) and (c).
- 8. Complete the following table.

Process	Name of product	Catalyst	Approx. temp.
Less (II) our	16// Janaca	90: - (010) 50:	H+ tHAS (B) 3-1
HABER	on paedi sath, s	$O_0H + (O_0 O_0) \leftarrow (O_0 O_0)$	4,002,001.00
CONTACT	nizacamin (i)	g DCL 480 Med Leon Line in a 11 males Carol Michigan III	EARL OF MALE AVEN DE
OSTWALD	a Calabaatika dalah	three compounts.	aslumich dans

- Rainwater contains traces of HNO₃ during lightning. Account for this by a series of balanced equations.
- Write down the equations involved in the manufacture of HNO₃ by Ostwald's process.
- 11. Show by balanced equations the dehydration of (a) sugar, (b) oxalic acid, (c) ethyl alcohol, and (d) MgSO₄. 10H₂O, by conc. H₂SO₄.
- 12. How do H₂ and Cl₂ react in (a) diffused sunlight? (b) direct sunlight? (c) darkness?