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1.2 PROPOSITIONAL LOGIC

The propositional logic represents logic through propositions and logical connectives. We may
define proposition as an elementary atomic sentence that may take either true value or false valye
but may not take any other value.

Consider the following examples :
It is raining. [It is a proposition as it may either be true or false.)
Australia won the ICC World Cup 2007.  [It is also a proposition as it is true]

India is a continent. [It is a proposition as it is false]
m What did you eat ? (It is not a proposition as it does not result in true or false.)
How are you ? [Not a proposition for the similar reason as above]
xn
Definition .-

A Proposition is an elementary Propositions are also called sentences or statements.

atomic sentence that may either After this introduction, let us now talk about terms and

be true or false but may take no symbols used in propositional logic.

other value,

1.2.1 Terms and Symbols

A simple proposition is one that does not contain any other proposition as a part. We will
use the lower-case letters, p, g, 1, ..., as symbols for simple statements or propositions.

A compound proposition is one with two or more simple propositions as parts or what we
will call components. A component of a compound is any whole proposition that is part of a larger
proposition ; components may themselves be compounds.

For example, following are compound propositions :

It is raining and wind is blowing.

Take it or leave it.
If you work hard then you will be rewarded.

An operator (or connective) joins simple propositions into compounds, and joins
compounds into larger compounds. We will use the symbols, +, ., =, and <> to designate the
sentential connectives. They are called sentential connectives because they join sentences (or what
we are calling statements or propositions). The symbol, ~, is the only operator that is not a connective ; it
affects single statements only, and does not join statements into compounds.

The symbols for statements and for operators comprise our notation or symbolic language.

Parentheses serve as punctuation.
Different types of connectives (or operators) used in propositional logic are as given below :
1. Disjunctive (Also called OR). Represented by symbols + or v. Disjunction means one
of the two arguments is true or both e.¢., p+ g (or pv q) means p OR gq. It's meaning
is either p is true, or g is true, or both.
2. Conjunctive (Also called AND). Represented by symbols . or & or . Conjunction
means both arguments are true e.¢., p.q (or p & g) means p AND gq. Its meaning i
both p and g are true.
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A compound statement is truth-functional if its truth value as a whole can be figured out
solely on the basis of the truth values of its parts or components. A connective is truth-functiona)
it makes only compounds that are truth-functional. For example, if we knew the truth values of »
and of g then we could figure out the truth value of the compound, p + 4 Therefore the compoungd,
p+ g is a truth-functional compound and disjunction is a truth-funchonal connective

Definition - All four of the connectives we are studying
| (disjunction, conjunction, imphcation, and equivalence) are
’ ket of bl lies s truth-functional Negation s a rruth-fundl‘mﬂ'f Operator
' With these four connectives and negation we can express all
m - w the truth-functional relations among statements. A truth table

ht'lp\ us c'\p"'\ﬁ it

| A Truth Table is a complete

Let us now learn to make truth tables for all the conmectives we have leamnt so far

(i) Negation (NOT). The NOT operator works on single proposstion thus. 1t s also called
unary connective sometimes. If pdenotes a proposition then its negation will be denoted by - por pf
or p .If pis 0 (false), then ~pis 1 (true) and if pis | (true) then - pis O (falue ! The truth table for this
operation is shown as follows

lTIble 1.1 I'ruth table for Negation (NO |

Also note that
NOT (NOT p) results into patselt i ¢,

pop
or ') =p
or ~ (~p) = p.

(i) Disjunction (OR). The OR connective works with more than one proposition  The
compound p + ghas two (2) component propositions (p and @ each of which can be true or false So
there are four (2 ) possible combinations. The disjunction of »with g (denoted as p < gor p. g will
be true whenever pis true or g1s true or both are true Consider the truth table given below

lTable 1.2. Truth table for Msjuncion (O R

P | .9 | __P§*9

| 0 0 " Note
i i | T a compound has n distinct
. 0 ' components, there will be 1
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o (i1i) Conjunction (AND). The AND connective also works with more than one proposition.
e compound p . g (or p & q) will be true whenever both p and 4 are true.

§ Table 1.3  Truth table for Conjunction (AND)

p q P-q
0 0 0
0 1 0
1 0 0
1 1 1

‘ (iv) Implication (If.. Then / Conditional). In the conditional p = g, the first proposition (the
if-clause) phere, is called the antecedent and the second proposition (then clause) 4 here, is called
the consequent. In more complex conditionals, the antecedent and the consequent could themselves
?e compound propositions. The conditional p= qwill be false when pis true and qis false. For all other
input combinations, it will be true.

iTable 1.4 Truth table for If.. Then

p q P=q
0 0 1
0 1 1
1 0 0
1 1 1

The conditional p=> g may be expressed as follows :

p=q=p'+q
(v) Equivalence (If and only If / Bi-conditional). A bi-conditional results into false when one
of its component proposition is frue and the other is false. That is, p < qwill be 0 (false) when pis 0

and qis 1 Or pis 1 and g is 0. For all other inputs, p<> qis 1.
?‘;Table 1.5 Truth table for If and only if.

o = O N
D—IOQHQ

p
0
0
1

1

The bi-conditional p <> ¢ may also be expressed as :

p>q=pg+p.q
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Some Related Terms

L , . :
Contingencies The propositions that have some combination of 1’s and 0’s in their truth tabje
column, are called contingencies.

Tautologies The propositions having nothing but 1's in their truth table column, are called
tautologies.

Contradictions The propositions having nothing but 0's in their truth table column, are called
contradictions.

Consistent Two statements are consistent if and only if their conjunction is not a

Statements contradiction.

Converse The converse of a conditional proposition is determined by interchanging the

antecedent and consequent of given conditional. It results into a new
conditional. e.g., Converse of p= g is g= p.
That is, if
p : It is raining.
g : Sky is not clear.
then, p = q = If it is raining then sky is not clear.

It's converse will be new conditional as given below :
g = p = If sky is not clear then it is raining.

Inverse The inverse of a conditional proposition is another conditional having
negated antecedent and consequent. That is, the inverse of p= gis p'= ¢'. e.g.,
if

p : It is raining.
g : Sky is not clear.
then, p = q = Ifitis raining then sky is not clear.

It's inverse will be a new conditional as given below :
p'= ¢ = Ifitis not raining then sky is clear.

Contrapositive The contrapositive of a conditional is formed by creating another conditional
that takes its antecedent as negated consequent of earlier conditional and

consequent as negated antecedent of earlier conditional. That is, contrapositive of
p=>qis ~q=>~p or g=>porq =y

1.2.3 Some Equivalence Propositional Laws

Two sentences are equivalent if they have the same truth value

under every interpretation
i.e., both the sentences possess the same truth set.

In the following lines, we are giving some equivalence |

. aws used in propositional logic. We
are giving them without proofs,

since their proofs are beyond the scope of this book.
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lTable 1.6 Some Equivalence Laws

1.

10.

11.
12,

0+ p=p
U.p::o

1+p:1
l,p:p

p+pg=p
]’+(}’+ q):p

F=p

ptp=p
p-p=p
p+p=1
p.p=0
p+tq=q+p
p-9=9.p

(p+q)+r=p+(q+7r)
(p-q).r=p.(q.7)

p.(g+r)=(p.q)+(p.71)

Properties of 0
Properties of 1
Absorption law

Involution

Idempotence law
Complementarity law
Commutative law
Associative law

Distributive law

p+(qg.n=(p + q.(p+7)

p+pq=p+q

p=q=p+4
pe=qg=(p=>q) -(9=p)

De Morgan'’s law

Conditional elimination

Bi-conditional elimination

Let us now have a look at some examples.

=l 7

Example 1.1. Construct a truth table for the expression (A.(A+ B)) What single term is the
expression equivalent to ?

Solution.
A B A+B (A-(A+ B))
i 0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

Looking at the table

possess the same truth set. Hence the given expression (A. (A + B))is equivalent to A

, we find that columns (A .(A + B)) and A are identical. That is, they
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possessing same truth set (1, 1, 0, 1). Hence it is proved that

set (1,

same truth set (1, 0, 0, 1). Hence proved that

COMpy,

Example 1.2, Using truth table, prove that p=>q is equivalent 10 ~q= ~p,
Solution.

SQM

n.
.. p g | -q ~p| pP=4 ﬂi@
I Q ~0 ﬂ—_——'—“—’] 1 1 1

0 1 0 1 1 !
o 0 1 0 2 0
L1 0 0 1 1

From the above truth table it is obvious that columns p= gand ~q= ~ p are ideng,,
p=>q=~ q= -~ q.

This rule is also called transposition.

Example 1.3. Prove that p= q=7 +¢.

Solution.
™ . p p=q | p+q |
0 0 1 1 1
| 0 1 1 1 1
o 0 0 0 0
| 1 1 0 1 1

From the above truth table, we find that columns p= gand p + g are possessing same:

1, 0, 1). Hence proved that
p=q = p+q
Example 1.4. Prove that p= g=g< p.
Solution.
' p q P=q q<= P

0 0 1 1

0 1 0 0

1 0 0 0

! L 1 1

From the above truth table, we find that both propositions p<> g and g P posses

PESad=qep.
Example 1.5. Prove that p<> q = (p= 7).(q= p).

SOUROn. s |
f p . q _I ___P=q ] 4”/;/)1
P P24 L p2q | gop | @oo.@22
| ] :

| 1 1
0 L . | I 0 ¢ |
3 0 0 | 0 0
] 1 ] | | 1 -

L1 | 1 1 _—
Since the columns p<s gand (p= ") (= p) are ld(‘nhcal it is proved that
Peq = (p > 4) (0= p)
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Example 1.6. Consider some simple propositions given below :
A It is raining.
B: Wind is blowing.
C: I am not driving.
From these, create the following compound proportions.
(HAv B (if) ~B (@)~B.C  (iv) A.~C  (v) A+ B.C.

Solution.
() Av B : It is raining OR wind is blowing.
(i) ~B : Wind is NOT blowing.
(i11) ~A.C : It is NOT raining AND I am not driving.
(iv) A.~C : It is raining AND I am driving.
(v) A+ B.C - It is raining OR wind is blowing AND I am not driving.
Example 1.7. Prove that X +1is a tautology.
Solution.
X 1 X+1
0 1 1
1 1 1

Since the column X +1has all trues (1’s) in its column, it is a tautology.
Example 1.8. Prove that X + X' is a tautology and X . X' is a contradiction.

Solution.
X' X+ X' X. X’
0 1 1
1 0 1 0

X + X' has all 1’s in its truth set, hence it is a tautology.
X . X' has all 0’s in its truth set, hence it is a contradiction.

1.2.4 Drawing Conclusions - Syllogism

While studying logic, many a times conclusions are drawn from given two or more logic
statements. This process, rather logical process of drawing conclusions from given logic
statements, is called syllogism. The given statements or propositions are called premises.

To draw conclusions, we may use any of the two

Definition v , ) methods available for it :
The w process of draw"\g V Truth Tab]e MethOd
conclusions from given proposi- Algebraic Method

tions is called syllogism. The

| propositions used to draw
- conclusion are called premises.

1. Truth Table Method

In this method, a truth table (TT) is drawn for all the
given premises and the conclusion fo be drawn. Then a
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conditional is prepared having the antecedent as conjunction of all given premises and consequent as the
conclusion to be drawn. If this conditional results into a tautology (all true’s i.e., 1’s) then the given,
conclusion is established. For this consider the example given below :
Example 1.9. From premises pand p= g, infer q.
Solution. Given premises are :
(PD) : p
(P2): p=q
Conclusion to be drawn C: g

As per the TT method, we have to prepare a truth table for given pr
conjunction of these given premises i.e., p.(p=> ¢q) and the conclusion to be dr

emises p, p= g, the
awn i.e., 4.

Also there should be a column for
P1.P2=Cie,[p.(p=>q]=>q
QOur truth table will look like :

p q p=4q p.(p=49) [p.(P=9)]=
0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

From the above truth table, it is clear that the conditional having antecedent as the
conjunction of premises [p.(p+ )] and consequent as the conclusion (g), is a tautology. Hence it is
established that from given premises p and p=> g conclusion drawn is 4. That is

p
p=4
q
Example 1.10. From p= gand g= 1, infer p=r.
Solution. Given premises are :
(PY) : p=4q
(P2): g=r
Conclusion (C) to be drawn : p=> r as per TT method.
We shall prepare a truth table having column for
Pl(ie, p=q), P2 (i.e, q= 1), PL. P2 i.e.,(p=q). (1= 1),
C(ie,p=>r)and P1. 2= Cie,[(p=9q).(g=1N]=(p=7)

'!'p g r | p=49 g=>r |p=>q).9@=>n| p=>r |[lp=>9.49=>nl= @E=171)
Lo 0 0 1 1 1 1 1
§ o 0 1 1 1 1 1
o 10 1 0 0 1 1
o0 1 1|1 1 1 1 1
1 0 0 0 1 0 0 1
10 1 0 1 0 1 1
1 1 0 1 0 0 0 1
1 1 1 N SR TR S N 1 1 ]
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From the table, we derive that
P1. P2 = Cis a tautology i.e., having all 1’s in its truth set. Hence concluded that

P=q

(i1) Algebraic Method

In this method, to draw a conclusion from given premises, conditional elimination is
carried out. That is, in place of a conditional p=> g its equivalent p + q(~p+ q) is substituted and
then it is checked whether the conditional having antecedent as the conjunction-of-all premises and
consequent as the conclusion-to-be-drawn, is a tautology or not. To understand this, consider the
example given below.

Example 1.11. From pand p=> q, infer g.
Solution. Given premises are
(P1): p
(P2): p=4q
Conclusion (C) to be drawn : g.
Let us compute Pl1.P2= C
ie., [p-(p= D=4
Carrying out conditional elimination i.c., substituting p=> g with p + g we get
=[lp-(p+DI=4q

={p-p-+p-g=>q

=0+(p.9)=q (- pp=0)
Carrying out conditional elimination once again, we get

(p-q)+4

—p+g+gq (" pq=p+q,Rule 10, table 1.6)

=p+1 (. q +q=1,Rule 6, table 1.6)

=p+1 (= p+1=p,Rule 2, table 1.6)

=1

Hence the result is established.
Example 1.12. From p=> qand q= r, infer p=>r.
Solution. Given premises are : p=>q, 4=t
and conclusion to be drawn is p=> 1.
Thus we have to establish that  [(p=>q).(9= N]=(p=7)
Carrying out conditional elimination, we get [(p+qg).(g+n)]=(p+71)
Carrying out conditional elimination once again, we get
=(p+a)-(q+r)+(pt)

=( P J"?) + (7 V(VIQ 1r) +(p+r) (De Morgan’s Law)

S(pg) (g Py (pan) (De Morgan's Law)
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1.5.1 Logical Function or Compound statement

Algebraic variables like a, b, ¢ or x, y, z etc. are combined with the help of Mathe,
Operators like +,-,x,/ to form algebraic expressions €.8:/ by
2x A+3x B—6x C=(10xZ)/2xY ie 2A+3B-6C=10Z/2Y

) Similarly, logic statements or truth functions aré combil}ed with the help of Logicy
like AND, OR and NOT to form a Compound statement o7 Logical function. e.g., Op"“lo“

He prefers tea not coffee.

He plays guitar and she plays sitar.

I watch TV on Sundays or I go for swimming.

These logical operators are also used to combine logical variables and logical COnstany

form logical expressions e.g., assuming x, y are logical variables
XNOTYORZ
Y AND XOR Z

1.5.2 Logical Operators
Before we start discussion about logical operators, let us first understand what a Truth Tables

Definition For example, following logical statements can hy

Truth Table is a table which only one of the two values (TRUE (YES) or FALSE (NQ))
represents all the possible 1. I want to have tea.
values of logical variables / . . 1als
i e 2. Tea is readily available.

possible resuits of the given Let us represent all the possible combinations of values the
combinations of values. statements can have in the tabular form :

I want to have tea T T F F

Tea is readily available T F T F T represents True

................................................................. F represents False

(Result) I'll have tea ThB B B

Or If we represent first statement as X and second statement as Y and result as R then'
above table can also be written as follows :

] Table 1.7
X Y R
1 1 1
1 0 0
0 1 0
0 0 0
Definition
if result of any logical statement 1 represe s FAL
or expression is always TRUE or value. presents TRUE value and 0 represe”
l,uhan-dfwwbcyand" o o
chve result is always FALSE or O it functio::“s is a truth table ie., table of truth palues
is called Fallacy. -

 ad
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Now let us proceed with our discussion about logical operators i.c.,
(@) NOT Operator (b) OR Operator (c) AND Operator
NOT Operator

This operator operates on single variable and operation performed by NOT operator is
called complementation and the symbol we use for itis (bar). Thus X means complement of X and
YL mean§ cgmplement of YZ. As we know, the variables used in boolean equations have a unique
characteristic that they may assume only one of two possibie values 0 and 1, where 0 denotes
FALSE and 1 denotes TRUE value. Thus the complement operation can be defined quite simply.

0=1
1=0
| Table 1.8 Truth Table for NOT operator
X X
0 1
1 0

Several other symbols e.g. ~, ' are also used for the complementation symbol. If ~ is used
then ~ X is read is ‘negation of X’ and if symbol’ is used then X' is read as complement of X.

FIGURE 1.1 Venn diagram for X

NOT operation is singular or unary operation as it operates on single variable.
Venn diagram for X is given above where shaded area depicts X.

OR Operator
A second important operator in boolean algebra is OR operator which denotes operation

called logical addition and the symbol we use for it is +. The + symbol, therefore, does not have the
‘normal’ meaning, but is a logical addition or logical OR symbol. Thus X +Y can be read as
X OR Y. For OR operation the possible input and output combinations are as follows :

0+0=0

0+1=1

1+0=1

1+1=1

And the truth table of OR operator is given below :
| Table 1.9 Truth Table for OR operator

X

G Note that when any one of X
and Yis 1, X+ Y is 1.

= = o o
= o = oI

— = = O
\
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It 1s often convenient to shorten X . Y . Z to XYZ, and using this convention, above
expression can be written as X+YZ+2Z

To study a boolean expression, it is very useful to construct a table of values for the va riables
af\d then to evaluate the expression for each of the possible combinations of variables in turn.
Consider the expression X + YZ. Here three variables X, Y, Z are forming the expression, each of
the vanables can assume the value 0 or 1. The possible combinations of values may be arranged in
ascending order as in Table 1.11 l

llele L11  Poasuible Combinations of X, Y and Z

-
{

X 4 Z Since X, Y, Z are three (3) variables in total.
Q 0 0 A truth table involving 3 input variables will
have 2° ie., 8 rows in total. The left most
0 0 1 \ column will have half of total entries (i.e., 4
0 1 0 entries) as zeros and half as 1's (in total 8).
N The next column will have no of zero’s and
0 1 1 1's halved than first column completing
1 0 0 8 rows and so on. That is why, first column
has four 0's and four 1's, next column has
1 0 1 two O's followed by two 1's completing
1 1 0 8 rows in total and the last column has one
0's followed by one 1's completing 8 rows

1 1 1 in total.

So a column is added to list Y . Z (Table 1.12)
|Table. 1.12 Truth Table for (Y . Z)

X Y V4 Y. Z

0 0 0 J

0 0 1 0 !

0 1 0 | v |

0 1 1 | 1 ‘\

1 0 0 ‘ 0 i N ANQ operation is
1 : : o NEe
1 1 0 0 |r

1 1 1 1 i

One more column is now added to list the values of YZ (Table 1.13)

lTable 1.13 Truth Table for ¥ . Z and YZ.

[Pasray Y z |v.z | YZ |
L0 0 0 0 r
0 0 1 0 | i
0 1 0 0 f I =
i ] } i ] ‘ ! E\‘;‘f—— Note that YZ contains com-
1 0 0 I 0 i plemented values of YZ
1 0 1 ; 0 | I
1 1 0 | ) '
EURE S | )
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1.6.1 Inverter (NOT Gate)

An mverter is also called a NOT gate because the output
is not the samwe as the input. The output 1s sometimes called the

comglement (opposite) of the input. Following tables summarise
the operaton

lTlNe LAS Trwh Table for NOT gate

Low High | 0
High Low » | 1

Alow input ¢ 0 produces high output i.e.,
1, and vice versa The symbol for inverter is
given in adjacent Fig. 1.4.

=l 25

Definition
An Inverter (NOT Gate) is a
gate with only one input signal
and one output signal; the
output state is always the
opposite of the input state.

' Table 1.16 Alternative truth table for NOT gate

o = | X

x|

P>

FIGURE 1.4 NOT gate symbol

1.6.2 OR Gate

If all inputs are 0 then output is also 0. If one or more
mputs are 1. the output is 1.

An OR gate can have as many inputs as desired. No
matter how manv inputs are there, the action of OR gate is the
same one or more 1 (high) inputs produce output as 1.

Following tables show OR action

'lelc 1.17 Tuwo mmput OR gate

Definition i
The OR Gate has two or more |
input signals but only one output |
signal. If any of the input signals
is 1 (high), the output signal is 1
(high;.

ITable 1.18 Three input OR gate

X g X F X Y Z F
0 o 0 | 0 0 0 0
I 1 § 0 0 1 1
AN ,
] 1 | 0 1 0 1
J | 1 F=X+Y ! 0 1 1 1 \\
- — |
i 1 0 0 1
! 1 0 1 1 F=X+Y+Z
1 1 0 1
L1 1 1 1
The symbol for OR gate is given below :
A A A—
o D = D
8 C D
(8} (b) (c)

AGURE 158 (o) Two inpuwt OR gote  (b) Three input OF gote

() Four input OR gate.
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1.6.3 AND gate Deﬁnition\
If any of the inputs is 0, the output is 0. To obtain :rh.m::Dﬂ:“l AN
output as 1, all inputs must be 1. and produce ki "npuy %
An AND gate can have as many inputs as desired. When all the inputy h*l
Following tables illustrate AND action. high then the gyl
otherwise s 0 ]
rable 119 7o inpue AND gate | Table 1.20 Three input AND
W | F AR
0 0 0 ¢ 0 0 0
0 1 0 \ 0 0 1 0
1 0 0 SN 0 1 0 0
1 1 1 Here, F =X .Y 0 1 1 0 \
1 0 0 0
1 0 1 0 A
1 1 0 0 Here,
1 1 1 1 F=x.

The symbol for AND is

A A \ 4
}—— F B F 2
B C S D ———
(a) () (©
FIGURE 1.6 (o) 2-input AND gate (b) 3-input AND gate (c) 4-input AND gate

T

1.7 RASIC POSTULATES OF BOOLEAN ALGEBRA

Boolean algebra, being a system of mathematics, consists of fundamental laws that are us
build a workable, cohesive framework upon which are based the theorems of boolean alg
These fundamental laws are known as Basic postulates of boolean algebra. These postulates state
relations in boolean algebra, that follow :-

L. fX#0 then X=1 ; and If X#1 then X=0
II. OR Relations (Logical Addition)

-

1+1=1

—
—

0

0+0=0 b 0
0
0

0+1=1 'OR 1
1
1

1+0=1 b ]
0
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III. AND Relations (Logical Multiplication)

0—|

0.0=0 AND 0
00—
0—|

0.1=0 AND 0
1T
) [——

1.0=0 AND 0
00—

IV. Complement Rules

0=1 0

-
n
o

-

1.8 PRINCIPLE OF DUALITY

This is a very important principle used in boolean algebra. This states that starting with a
boolean relation, another boolean relation can be derined by

1. Changing each OR sign (+) to an AND sign (.)
2. Changing each AND sign (.) to an OR sign (+)
3. Replacing each 0 by 1 and each 1 by 0.

The derived relation using duality principle is called dual of original expression.
For instance, we take postulate II related to logical addition, which states
(@ 0+0=0 (b)0+1=1 ()1+0=1 (d1+1=1

Now working according to above guidelines, + is changed to . and 0’s are replaced by 1's,
these become

(H 1.1=1 (i) 1.0=0 (i) 0.1=10 (v)0.0=0
which are nothing but same as that of postulate III related to logical multiplication. So i, #, iii, iv are

the duals of 4, b, c & d. We'll be applying this duality principle in the theorems of boolean algebra
which is our next topic.

1.9 BASIC THEOREMS OF BOOLEAN ALGEBRA

Basic postulates of boolean algebra are used to define basic theorems of boolean algebra that
provide all the tools necessary for manipulating boolean expressions. Although simple in
appearance, these theorems may be used to construct the boolean algebra.
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1.9.1 Properties of 0 and 1
@o+X=Xx
1
b)1 =
(b)y1+Xx =1 X
0
(c)0.X =0
X
d1.X=X
Proof.
(a) 0 + X =X

.

(gate representatiyy, o (q)

)
(gate represen tafiou of (b»
(gate representation Of(c))

(gate representation of (d)

Truth table for above expression is given below in Table 1.21, where R signifies the outp

! Table 1.21 Truth Table for 0 + X =X.

0 X R
0 0 0
0 1 1

as X can have values either 0 or 1 (postulate I) both the values ORed with 0 produce the same

as that of X. Hence proved
(b) 1+ X =1

Truth table for this expression is given below in Table 1.22, where R signifies the ouy
§ Table 1.22 Truth table for 1 + X =1

1 X R
1 1
1 1 1

Again X can have values 0 or 1. Both the values (0 and 1) ORed with 1 produce the oufp

1. Hence proved. Therefore 1+ X =1is a tautology.

(€) 0.X=0

As both the possible values of X (0 and 1) are to be ANDed with 0, so, the truth table for
expression is as follows where (R signifies the output)

’; Table 1.23 Truth Table for 0.X = (.

0 0 0
0 1 0

Both the values of X(0 and 1) when ANDed wi

Therefore, 0. X =01is a fallacy.

10!
th produce the output as 0. Hence P
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M1.Xx=X

Now both the

o possible values of X (0 and 1) are to be ANDed with 1. Thus the truth table for
it will be as fouo“'s

| Table 1.24  Truth Table for 1. X =X

0
1

Now observe both the values (0 and 1) when ANDed with 1 produce the same output as that
Hence proved. Here b and c are duals of each other and a and d are duals of each other.

1.9.2 Indempotence Law
This law states that

X
@)X +X =X ie, X . X (gate representation for (a))
X :
and X . X=X ie, AND X (gate representation of (b))
X

Proof.
(@) X - X=X

To prove this law, we will make truth table for above expression. As X is to be ORed with
itself only, we will prepare truth table with the two possible values of X (i.e., 0 and 1).

| Table 1.25 Trush Table for x + X =X

L 1 X R
1 0
1

1

of X.

X X R

0 0 0

1 1 1

0+0=0 (ref. postulate IT)
and 1+1=1 (ref. postulate IT)

= X+ X=X as it holds true for both values of X. Hence proved.
by Xx. x=X

Here X is ANDed with itself. Again we will prepare truth table for this expression taking 2
possible values of X (0 and 1)

| Table 1.26 Truth Table for X . X = X

| X X R
’ 0 0 0
1 1 1
0.0=0 (ref. postulate 11I)
and 1.1=1 (ref. postulate I1I)

= X.X =X as it holds true for both values of X. Hence proved.
{a) and (b) are duals of each other.
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1.9.3 Involution
This law states that

x|
x|
1]
>

(X)=X ie., X

ich is gi below.
To prove this, again we'll prepare truth table which is given

| Table 1.27 Tvun Tabie for X =X

i R S B
g 1 0 1

First column represents possible values of X, second __c_olumr"t rePresents complement of
(i.e., X) and the third column represents complement of X (i.e., X ) which is same as that of X, He
proved.

This law is also called double-inversion rule.

1.9.4 Complementarity Law

These laws state that

] x . 2 Y
(@ X+X =1 5 ) or

and ()X X =0 I [ % | AND X.X=0 (gate representation of (b))

Proof.

(a) We will prove X + X =1with the help of truth table which is given below :
l Table 1.28 Truth Table for X + X =1

(gate representation of (a))

X X X+X
0 1
1 0 1

Here, in the first column possible values of X hay bee hs of |
' = e been tak nsists 0!/
values (complement values of X), X and X values are ORed andel;ll,‘lsecond ctol'um:oco gt
column as e output is shown

postulatt "
l+0:1 (ref'
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() X.X=0

Truth table for this expression is as follows :

llele 1.29 Truth table for X .X =0

as
and

X X X.X
0 1 0
1 0 0
0.1=0

1.0=0

(ref. postulate III)
(ref. postulate III)
= X.X =0, as it holds true for both the values of X. Hence proved. Observe here X . X =0 is

=l 3]

dual of X + X = =1 Changing (+) to (.) and 1 to 0, and we get X. X =0. It is a fallacy.

1.9.5 Commutative law

These laws state that
X+Y=Y+X

(a)

| OR

R

X

| or

R

X

Y—-—-—

(b)

X.Y=Y.X

§\ (R signifies the output) //5

Proof. (a) Truth Table for X +Y =Y + X is given below :
| Table 1.30 Trush Table for x + v =y + X

__T

X

X

Y

Y+X

Y
0
1
0

1

+
0
1
1
1

4+
0
1
1
1

Compare the columns X + Y and Y + X, both of these are identical. Hence proved.
(b) Truth table for X.Y =Y . X is given below :

| Table 1.81 Truh wbie for x . ¥ =v.X

X

O O

¥
0
1
0
1

-0 O o=

-0 O O |

Both of the columns X . Y and Y . X are identical, hence proved.
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1.9.6 Assoclative law

These laws state that
@ XNe(YeZhmi(XoY)o/Z

f xm .« v

M) XY =XV Z

e

‘e
AND

Proof. (a) Truth table for X +(Y + Z)=(X +Y)+ Zis given below :

l Table 1.32 /ruth Table for X + (Y + Z) = (X + Y)y+ Z

5 ® Y & r'ﬁywig X+Y | X+(Y+2)|(X+Y)+1
0 o o | 0 0 0 0
0 0 1 1 0 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

Compare the columns X + (Y + Z)and (X +Y) + Z, both of these are identical. Hence pre»
Since rule (k) is dual of rule (a), hence it is also proved.

1.9.7 Distributive law

This law states that
(a) X(Y+2Z) = XY+ XZ

LS. X
X

Y p Y+ Z _
z p—

niwgmummmmmmdwndwum,
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(0) X+YZ=(X+YNX+2)

Proof.
(@) Truth table for X{Y + Z)- XY + XZ is given below :
l Table 1.33 Truth Table for X (Y + Z)=XY + X7 /gk ‘
X Y Z Y+ Z *
XY | Xz X(Y+2Z)| XY+ XZ
| 0 0 0 0 0 0 0 0
J; 0 0 1 1 0 0 0 0
} 0 1 0 1 0 0 0 0
i 0 1 | 1 0 0 0 0
1 0 0 0 0 0 0 0
} 1 0 1 | 0 1 1 1
| 1 0 ] 1 0 1 1
L 1 1 1 1 1 1 1

Both the columns X(Y + Z) and XY + YZ are identical, hence proved.

(b) Since rule (b) is dual of rule (a), hence it is also proved.

However, we are giving the algebraic proof of law X + YZ =(X +Y)(X + Z)
RHS =(X+Y)X+Z)=XX+XZ+XY +YZ

=X+XZ+XY+YZ (XX = X Indempotence law)
=X+ XY+ XZ+YZ=X(1+Y)+ZX+Y)

=X1+2Z(X+Y) (1+Y =1property of 0 and 1)
=X+XZ+YZ (X.1=X property of 0 and 1)
=X(1+2Z)+YZ

=X1+YZ (1+ Z =1property of 0 and 1)
=X+YZ (X .1=X property of 0 and 1)

~-L.H.S. Hence provod

1.9.8 Absorption law

According to this law |
e, (a)X+XY=X '; g

T
L

AND
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X+ XY X\
N Y (N e N)
X+Y.1 (N + X = Leomplementarity law)
N (Y.L Y property of 0 and 1)
RH N Hence proved,

All the theorems of boolean algebra, which we have covered so far, are summarised in the

tollow ny table

lrlhll‘ L35 Boolean Vgebra Rudes

?J

:..a

F 1L
12
13.
14
15.

lo.

17,

18,

0+ X =X
Properties of 0
0.X 0
1+ X =l
Properties of 1
1. X = X
X+ X X
Indenmpotence law
X . XwX
X = X Involution
X+ X o1 ,
Complementarity law
XN X0
N+Y =Y+ X
Commutative law
X Y=-YNX

N+ (Y + D) ( N+ Y+ /2
Assoctative law

‘(}4!-) (\\)x'

X(Y+Z)=XY+ XZ
Distributive lawe

N+YZ=(X+Y)N+2)

X+XY=X ‘
Absorption law
X*(X+Y)- X

X« XY - X )

1.10 DEMORGAN’S THEOREMS

One of the most powertul identities used in boolean algebra is DeMorgan’s theorem.
Augustus DeMorgan had paved the way 1o boolean alpebra by discovering these two important

theorems This section introduces these tee theorems of DeMorgan.
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1.10.1 DeMorgan’s First Theorem

It states that X+Y=XY

’Y‘R:

Proof.
To prove this theorem, we need to recall compler_n_entarlty laws, which state that
X+_X':1 and XX :0

i.e., a logical variable/expression when added with its complement produces the output
when multiplied with its complement produces the output as 0.

Now to prove DeMorgan’s first theorem, we will use complementarity laws,

Let us assume that P=X+Y where, P,X,Y are logical variables. Then, accorg;
complementation law

P+P=1 and P.P=0.

That means, if P, X, Y are boolean variables then this complementarity law must};
variable P. In other words, if P ie., if X+Y =XY then

(X +Y)+ X Y must be equal to 1.

(as X+
and (X+Y).X Y must be equal to 0. (asX.
Let us first prove the first part, i.e.,
X+V)+(XY)=1
X+)+XY =((X+Y)+X).(X+Y)+Y) (ref. X +YZ=(X+Y)
=X+X+Y)(X+Y+Y)
=(1+Y)(X+1) (ref. X
=1.1 (ref. 11
=1
So first part is proved.
Now let us prove the second part i.e.,

(X+Y).XY =X Y.(X+Y) (ref. X(YZ)?
=XYX+XYy (ref. X (Y + D=
=XXY+XYY
=0.Y+X.0 (ref
=0+0 =0

So, second part is also proved, thus: X3 Y=XY




BOOLEAN ALGEBRA . 37
1.10.2 DeMorgan’s Second Theorem

This theorem states that: X.Y=X+Y

X \ X.Y R
AND =
) e
NOT

Proof. Again to prove this theorem, we will make use of complementarity law i.e.,
X+X=1 and X.X =0.

If XY's complement is X +Y then it must be true that
@ XY +(X+Y)=1land  (b) XY(X +Y)=0

To prove the first part
LHS=XY+(X+Y)

=(X+Y)+XY (ref. X+Y=Y+X)
=(X+Y+X).X+Y +Y) (ref. (X+Y)(X+Z)=X+YZ)
=(X+X+Y).(X+Y+Y)
=1+Y).(X+1) (ref. X + X =1)
=1.1 (ref. 1+X=1)
=1=R.H.S
Now the second part i.e.,
XY.(X+Y)=0
LHS=XY.(X+Y)

=XYX + XYY (ref. X(Y +2Z)=XY +X2)
=XXY + XYY
=0.Y +X.0 (ref. X.X =0)
=0+0=0=R.H.S.

XY.(X+Y)=0 and XY+(X+Y)=1

= X—Y = )—{ <+ 7
Hence the theorem.

Although the identities above represent DeMorgan’s theorem, the transformation is more
easily performed by following these steps :

(i) Complement the entire function
(if) Change all the ANDs (.) to ORs (+) and all the ORs (+) to ANDs (.)
(iif) Complement each of the individual variables.
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1.11 DERIVATION OF BOOLEAN EXPRESSION

Boolean expressions which consist of a single variable or its complemente.g., X or Yor 7 are
known as literals.

Now betore starting derivation of boolean expression, first we will talk about two very
important terms. These are (1) Minterms — (17) Maxterms

1.11.1 Minterms

One of the most powerful theorems within boolean algebra states that any boolean function
cen be expressed as the sum of products of all the variables within the system. For example, X + Y
can be expressed as the sum of several products, each of the product containing letters X and Y. These
products are called minterms and each contains all the literals with or without the bar.

y Definition Also when values are given for different variables,
MINTERM is a product of all the minterm can easily be formed. ¢.g., if X=0,Y =1, Z=0 then
literals (with or without the bar) minterm will be X YZ i.e., for variable with a value 0, take its
within the logic system. complement and the one with value 1, multiply it as it is.

Similarly for X =1, Y =0, Z =0, minterm will be XY Z.
Steps involved in minterm expansion of expression

1. First convert the given expression in sum of products form.

[n each term, if any variable is missing (e.g., in the following example Y is missing in
first term and X is missing in second term), multiply that term with

( missing term + missing term ) tactor, (¢.8.. if Y is missing multiply with Y + Y).
3. Expand the expression.
4. Remove all duplicate terms and we will have minterm form of an expression.
Example 1.20. Convert X + Y to minterms.
Solution. X+Y=X1+Y.1

=X.(Y+Y)+Y(X + X) (X + X =1 complementarity law)
=XY+ XY +XY+XY
=XY + XY + XY + XY

=XY + XY + XY (XY + XY = XY Indempotent law)

Note that each term in the above example contains all the letters used : X and Y, The terms

XY, XY and XY are therefore minterms. This process is called expansion of expression.

4 9

3 ] . v a5 3 npe . i1
Other procedure for expansion could he

1. Write down all the terms

2. P'ut X's where letters much be inserted to convert the term to a product term
3. Use all combinations of X's in cach term to generate minterms
4. Drop out duplicate terme,
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Example 1.21. Find the minterms for AB+ C.

Solution. [t is a 3 variable expression, so a product term must have all three letters A, B and C
1. Write down all the terms

AB+ C
2. Insert X's where letters are missing ABX + XXC
3. Write all the combinations of X‘s in first term ABC, ABC

Write all the combinations of X’s in second term ABC, ABC, ABC, ABC
4. Add all of them.

Therefore, AB+ C = ABC + ABC+ ABC + ABC + ABC + ABC
5. Now remove all duplicate terms

= ABC + ABC+ ABC+ ABC + ABC

Now, to verify we will prove vice versa

ie., ABC + ABC+ ABC+ ABC+ ABC = AB+ C
L.H.5.= ABC + ABC+ ABC+ ABC + ABC
=ABC+ ABC+ ABC + ABC + ABC (rearranging the terms)
=AC(B+ By+ ABC + AB(C + ()
=AC.1+ ABC + AB.1 (B+B=1and C+C=1)

=AC+ AB+ ABC

=AC+ A(B+ BC)

=AC+ A(B+C) (X + XY =X+Y Rule 18, Table 1.35)
=AC+ AB+ AC

=AC+ AC+ AB

=C(A + A)+ AB

=C.1+ AB (A+ A=1)
=C+ AB

=AB+ C=R.H.S.

Shorthand minterm notation

Since all the letters (2 in case of 2 variable expression, 3 in case of 3 variable expression) must
appear in every product, a shorthand notation has been developed that saves actually writing
down the letters themselves. To form this notation, following steps are to be followed :

1. First of all, copy original terms.
2. Substitute s for barred letters and 1’s for nonbarred letters.
3. Express the decimal equivalent of binary word as a subscript of .

Example 1.22. To find the minterm designation of XY Z.
Solution. 1. Copy Original form = XY Z

2. Substitute 1’s for non barred and (s for barred letters
Binary equivalent =100

Decimal equivalent of 100 =1 x22 40x2' +0x2" =44+0+0=4
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3. Express as decimal subscript of m =my
Thus XY Z =m,
Similarly, minterm designation of ABCD would be
Copv Original Term ABCD
Binarv equivalent =1010
Decimal equivalent =1x2% +0x2% +1x2' +0x2°=8+0+2+0=10

Express as subscript of m =my,

1.11.2 Maxterms

; S‘ - Trying to be logical about logic, if there is something called minterm, there surely must be
{ixy  one called Maxterm and there is.

If the value of a variable is 1, then its complement is

Definiti its
tion _ added otherwise the variable is added as it is. e.g.,
A ,RM 'S a.sum of all the If the values of variables are X =0,Y =1and Z =1then
literals (with or without the bar)

its Maxterm will be
X+Y+2Z

(Y and Z are 1's, so their complements are taken ;

X =0, so it is taken as it is)

within the logic system.

Similarly, if given values are X=1,¥ =0, Z= 0 andW =1 then its Maxterm is
X+Y+Z+W
Maxterms can also be written as M (capital M) with a subscript which is decimal equivalent

of given input combination e.g., above mentioned Maxterm X +Y +Z+W whose input
combination is 1001 can be written as M, as decimal equivalent of 1001 is 9.

1.11.3 Canonical Expression
Canonical expression can be represented in following two forms :
(i) Sum-of-Products (S-O-P) form (11) Product-of-sums (P-O-S) form
Definition

Boolean Expression composed
entirely either of minterms or

Sum-of-Products (S-0-P)
A logical expression is derived from two sets of known

maxterms is referred to as values :
CANONICAL EXPRESSION. ~ various possible input values
> the desired output values for each of the input
combinations.

Let us consider a specific problem.

A logical network has two inputs X and Y and an output Z. The relationship between inputs and
outputs is to be as follows :

() When X=0 and Y =0 then Z=1 (if) When X=0 and Y=1 then Z=0
(’I) When X=1 and Y-_—O, then Z=1 (it’) When X =1 and Y:L then Z:l
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We can prepare a truth table from the above relations which is as follows :

Ilele 1.36  Truth table for product terms (2-input).

X 4 Z Product Terms
e 0 1 XY
I 1 0 Xy
| 1 0 1 Xy
| 1 1 XY

Here, we have added one more column to the table consisting list of product terms or minterms.
Adding all the terms for which the output is 1 i.e, Z =1we get following expression :
XY+XY+XY=Z
Now see, it is an expression containing only minterms. This type of expression is called
minterm canonical form of boolean expression or canonical sum-of-products form of expression.
Thus we can say

When a boolean expression is represented purely as sum of minterms, it is said to be in
CANONICAL SUM-OF-PRODUCTS FORM.

Example 1.23. A boolean function F defined on three input variables X, Y and Z is 1 if and only if
number of 1 (one) inputs is odd (e.g., Fis 1 if X = 1,Y = 0,Z=0). Draw the truth table for the above
function and express it in canonical sum-of-Products form.

Solution. The output is 1, only if one of the inputs is odd. All the possible combinations
when one of inputs is odd are

X=1 Y=0, Z=0
X=0 Y=1 Z=0
X=0, Y=0, Z=1
for these combinations output is 1, otherwise output is 0. Preparing the truth table for it, we get the

following truth table.
lTable 1.37 Truth table for product terms (3-input)

Product Terms /

X Y z F Minterm;n

: . . 0 XYz
| x : . 1 XYE
— ; 0 1 XYZ

: ; 1 0 X¥Z
S : = 1 XY Z
—-! . L | 0 XYZ
-t o | o | XYZ
r—-—"'i'“ T 7‘] S 1 _ 0 — '“)9’/7
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Adding all the minterms (product terms) for which output is 1, we get
XYZ+XYZ+XYZ=F

This is the desired Canonical Sum-of-Products form.

So, deriving S-O-P expression from Truth Table can be summarised as follows :
1. For a given expression, prepare a truth table for all possible combinations of inputs,
2. Add a new column for minterms and list the minterms for all the combinations,
3. Add all the minterms for which there is output as 1. This gives you the desired

canonical S-O-P expression.

Another method of deriving canonical S-O-P expression is Algebraic Method. This is just
the same as we have covered in section 1.11.1. We will take another example here.

Example 1.24. Convert (XY)+ (X Z) into canonical sum of products form.

Solution. Rule 1. Simplify the given expression using appropriate theorems/rules.

(XY)+(XZ)=(X+Y)(X + Z) (using DeMorgan’s laws)
=X+YZ (using Rule 15 of Table 1.35)
Since it is a 3 variable expression, a product term must have all 3 variables

Rule 2. Wherever a literal is missing, multiply that term with (missing variable
+ missing variable )

=X+YZ
=X(Y+YNZ+Z2)+(X+X)YZ
(Y. Z are missing in first term, X is missing in second term)
=(XY+XYNZ+Z)+XYZ+XYZ
=Z(XY+XY)+ Z(XY + XY)+ XYZ+X YZ
=XYZ+XYZ+XYZ+XYZ+XYZ+XYZ
Rule 3. Remove duplicate terms i.e.,
=XYZ+XYZ+XYZ+XYZ+XYZ
This is the desired Canonical Sum-of-Products form.
Above Canonical Sum-of-Products expression can also be represented by following
shorthand notation e.g., F=X1,4,56,7) or F=%YXm(1,4,5,6,7)
where F is a variable function and mis a notation for minterm
This specifies that output F is sum of 1%, 4™, 5™ 6™ and 7 minterms Le,
F=my +mg +ms +mg +m,
Converting Shorthand Notation to Minterms

We already have learnt how to represent minterm into shorthand notation. Now we will

learn how to convert vice versa.
Rule 1. Find binary equivalent of decimal subscript e.g., for m subscript is 6, binary

equivalent of 6 is 110.
Rule 2. For every 1's write the variable as it is and for 0's write variable’s complemented form

Le., for 110 it is XYZ, XYZ is the required minterm for mg .
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Example 1.25. Conve * followti ‘ . '
(‘ wert the following three input function F denoted by the expression :
- ¥ & : .
| I | (0.1 2, 5) nto its canonical Sum-of-Products form.
Solution. It three inputs we take as X, Y and Z then |
F=my +my +ny +omg
my =000=> XY Z
my =001=XYZ
m, =010= XYZ
7 mg = 101=> XYZ
Canonical S-O-P form of the expression is
XYZ+XYZ+XYZ+XYZ
Product-of-Sum form
-\Nhen a bool'etlrl expression is represented purely as product of Maxterms, it is said to be in
canonical Product-of-Sum form of expression.

Note
When a boolean expression is This form of expression is also referred to as Maxterm

represented purely as product canonical form of boolean expression.

of Maxterms, it is said to be in
Just as any boolean expression can be transformed into

CANONICAL S
PRODUCT-OF-SUM form of a sum of minterms, it can also be represented as a product of
expression. Maxterms.

(a) Truth Table Method
The truth table method for arriving at the desired expression is as follows :

1. Prepare a table of inputs and outputs

2. Add one additional column of sum terms. For each row of the table,
formed by adding all the variables in complemented or uncomplemented form i.e., if input
value for a given variable is 1, variable is complemented and if 0, not complemented.

for X=0,Y =1 Z=1 sum term willbe X +Y + Z.

a sum term is

Now the desired expression is product of the sums from the rows in which the output is 0.

Example 1.26. Express in the product of sums form, the boolean function F(x,y, z) and the truth

table for which is given below :
X y oz | F
i 0 0 0 I
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 P_M,HF_L__WL, 1
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=AB+ A +C+ ABC (putting AC = A + C DeMorgan’s 2" theoren)
=A+AB+C+ ABC (rearranging the terms)
=§+B+E+AT3C (putting A + AB= A+ Bbecause X + XY =X +Y)
=A+C+B+ABC=A+C+ B+ BAC

=A+C+B+ AC (putting B+ BAC = B+ AC because X + XY =X +Y)
=A+B+C+CA

=Z+B-_{-E+A ('.'6+CA=E+A)
=A+A+B+C

=1+ B+C (putting A+ A =1)

1 (as 1+ X =1i.e., anything added to 1 results in 1)

Example 1.32, Reduce XY Z + XYZ + XY Z + XYZ.
Solution. XY Z + XYZ + XYZ + XYZ =X(YZ + YZ)+ X(Y Z + YZ)

=X(Z (Y +Y)+X((Z (Y +Y))

=X(Z.1)+X(Z.1) Y +Y=1)
=XZ+XZ

=Z(X +X)

=Z.1 (X +X=1)

1.12.2 Simplification Using Karnaugh Maps

Truth Tables provide a nice, natural way to list all values of a function. There are several
other ways to represent function values. One of them is Karnaugh Map (in short K-Map) named after
its originator Maurice Karnaugh. These maps are sometimes also called Veitch diagrams.

What is Karnaugh Map ? Karnaugh map or K-map is a graphical display of the fundamental
products in a truth table.

Karnaugh map is nothing but a rectangle made up of certain number of squares, each square
representing a Maxterm or Minterm.

1.12.3 Sum-of-Products Reduction using Karnaugh Map

In S-O-P reduction each square of K-map represents a minterm of the given function. Thus,
for a function of n variables, there would be a map of 2" squares, each representing a minterm
(refer to Fig. 1.7). Given a K-map, for S-O-P reduction the map is filled in by placing 1s in squares
whose minterms lead to a 1 output.

Following are 2, 3, 4 variable K-maps for S-O-P reduction. (see Fig. 1.7)

Note in every square a number is written. These subscripted numbers denote that this
square corresponds to that number’s minterm. For example, in 3 variablemap X Y Z box has been
given number 2 which means this square corresponds to m,. Similarly, box number 7 means it
corresponds to m, and so on.

" Please notice the numbering scheme here, it is 0, 1, 3, 2 then 4, 5, 7, 6 and so on. Always
squares are marked using this scheme while making a K-map.
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How to map in K-map ?

We'll take an example of 2-variable map to illustrate this

Suppose, we have been given with the following truth table for mapping (Table 1.38).
" Table. 1.38

_ = 0 oD
- o = o |t
- = o O™

Canonical 5-O-P expression for this table is F = AB + ABor F=3 2,3).
To map this function first we’ll draw an empty 2-variable K-map as shown in Fig. 1.8(a).

K 2] B
A [0] (1] A [0] (1] [0] (1]

T A
I

(0] [0] [0] 0 0

) 4] 1 1 1] 1 1

(a) (b) (c)

FIGURE 1.8  How to fill _ -ariable K-map for a given truth table.

Now look for output 1 in the given truth table (1.38) for a given truth table.

For minterms m, and m; the output is 1. Thus mark 1 in the squares for m, and m; i.e., square
numbered as 2 and the one numbered as 3. Now our K-map will look like Fig. 1.8(b).

After entering 1's for all 1 outputs, enter (’s in all blank squares. K-map will now look like

Fig 1.8(c). Same is the method for mapping 3-variable and 4-variable maps i.e., enter 1’s for all 1
outputs in the corresponding squares and then enter 0’s in the rest of the squares.

How to reduce boolean expression in S-O-P form using K-map ?
For reducing the expression, first we have to mark pairs, quads and octets.

To reduce an expression, adjacent 1's are encircled. If 2 adjacent 1's are encircled, it makes a
pair ; if 4 adjacent 1’s are encircled, it makes a quad ; and if 8 adjacent 1's are encircled, it makes an
octet.

While encircling groups of 1’s, firstly search for octets and mark them, then for quads and
lastly go for pairs. Thus is because a bigger group removes more variables thereby making the
resultant expression simpler.

Reduction of a pair. In the K-map in Fig. 1.9, after mapping a given function F (W, X, Y, Z)
two pairs have been marked. Pair-1 is m, + m, (group of 0™ minterm and 4" minterm as these
numbers tell us minterm’s subscript). Pair-2 is my, + mys.
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Observe that Pair-1 is a vertical pair. Movmg vertlcally in pair-1, see one variable ) £8

changing its state from XtoXasmyisW XY Z and m, is W XY Z. Compare the two and Wesee
W X Y Z changes to W X Y Z. So, the variable X can be removed.
YZ o _ _ ~N.YZ _ _
[p0]YZz [0o1)Yz [11]YZ [10)YZ W [00)YZ [011¥YZ [M1YZ [10)yz

( T

[00) W X m 0 0 0 [00] W X (1\ 0 0 ‘
0 1 } : ‘ 3 2

r 9 4 5 |
U xm
1

" (11 wx 0 0 (1% 1 ) 11 wx 1 0

[1ojwx 0 0 0 0 [(1oywx \1) 0 0

FIGURE 1.9 Pairs in a given K-map. FIGURE 1.10 Quads in a given K-map

Pair Reduction Rule
Remouve the variable which changes its state from complemented to uncomplemented or vice versa

Pair removes one variable only.
Thus reduced expression for Pair-1is W Y Z asW X Y Z (m;) changes to W XY Z (m,).

We can prove the same algebraically also as follows :
Pair-1 =my + my =W XY Z+W XY Z
WY Z(X+X)
=WYZ.1 (X+X=
=WYZ
_Similarly, reduced expression for Pair-2 (1, + my5) will be WXY as W XY Z (m,, ) changes |
WXYZ (my5). Z will be removed as it is changing its state from Z to Z.

Reduction of a quad
[f we are given with the K-map shown in Fig. 1.10 in which two quads have been marked.
Quad-1 is my + my + my, + mg and Quad-2 is m, + mg + mys + my,. When we move acro
quad-1, two variables change their states i.e., W and X are changing their states, so these tv
variables will be removed.

Quad. Reduction Rule

Remove the two variables which change their states. A Quad removes two variables. Thus reduc
expression for Quad-1is Y Z as W and X (both) are removed.

Similarly, in Quad-2 (m; + mg + myg + my, ), horizontally moving, variable Z is removed
W XY Z(m,) changestoW XY Z (m)and vertically moving, variable W is removed asW X Y Z("
changes to WXYZ. Thus reduced expression for quad-2 is (by removing W and Z) XY.
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Reduction of an octet
Suppose, we have K-map with an octet marked as shown in Fig. 1.11.

vz
wx\[ooavz ©NYZ [1NYZ [o0jYZ

Pojwx | o | 0 0 0

01w X | 0 1‘ 0 0 0

FRGURE 1 11 Octets in o given K-map.

While moving horizontally in the octet two variables Y and Z are removed and moving vertically
one variable X is removed. Thus eliminating X, Y and Z, the reduced expression for the octet is Wonly.

Octet Reduction Rule

Remore the three variables which change their states. An octet removes 3-variables. But after
marking pairs, quads and octets, there are certain other things to be taken care of before arriving at
the final expression. These are map rolling, overlapping groups and reduntant groups.

Map Rolling
Map Rolling means roll the map i.e.. consider the map as if its left edges are touching the right

——
| |
{

~

100) A5 l u ’ [00] AB L__J y
: 1

| 6

b

edges and top edges are touching bottom edges. This is a special property of Karnaugh maps that its
opposite edges squares and corner squares are considered contiguous (Just as the world map is
ag!l 11 | 1 [01]AB 1 \
f01]AB | { ; ,
[10] AB ' 1 1 ~
(b) Quads

. — CD ~ M ~ D
P ye5 onEp [(NCD [(0CE > B0CH [UED [11C0 (100D
[11] AB 1145 ’lJ

[10) AB
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S 2] = o] 11CD [11)C
- [00)CD [0p1)CD [11]CD [10]CD [oojco [01] (11CD g5
AB N Ja R . AB [, L ‘—-—TT
— |
(00)AB | 1J 1 [1 [00] AB 1 1 1 1|
- i - ! : —t—7
01 AB [01]AB .
[11] AB [11] AB
z 1 18 4 12 ‘1:
|
= ‘ = |
[10] A8 1 1 1 [10] AB 1 1 1 1
. 8 p] 11 10 <) 3 i1
(c) quad (b) octet

FIGURE 1.12  Map rolling.

treated contiguous at its opposite ends). As in opposite edges squares and in corner sauares only o
variable changes its state from complemented to uncomplemented state or vice versa. Therefore, wh

marking the pairs, quads and octets, map must be rolled. Following pairs, quads and octets 2
marked after rolling the map.

Overlapping Groups

Overlapping means same 1 can be encircled more than once. For example, if the following K-m:
(Fig. 1.13) is given :

cD __ _ -
[00)CD [01]CD [11]1CD [10]CD

AB

[00)AB

[01] AB (1 ﬂ 1 \

[11] AB N Wl i 1 J

[10) AB 1

FIGURE 1.13 Overlapping Groups.

Observe that 1 for m, has been encircled twice. Once for Pair-1 (ms + m;)and again for Qu
(7 + g + 15 + myy ). Also 1 for my, has been encircled twice, For the Quad and for Pair-2 (m + mo

Overlapping always leads to simpler expressions.
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Here, reduced expression for Pair-1is A BD
reduced expression for Quad is BC
reduced expression for Pair-2 is AC D
Thus final reduced expression for this map (Fig. 1.13) is
ABD + BC + ACD
Thus reduced expression for entire K-map is sum of all reduced expressions in the very K-map.

But before writing the final expression we must take care of Reduntant Groups.
Reduntant Group

Redun_tant Group is a group whose all 1's are overlapped by other groups (i.e., pairs, quads,
octets). Here is an example, given below in Fig. 1.14.
co s
& [OICDO [01CD  [11CD  [10]CD -

B (00]CD [01]CD [111CD [10]CD

RIS [00] AB

onas | (1 1 pnas | (1 1)
(111 AB | |G 1)‘ - [11] AB G:___D

P4 13 15 id

fOpAR | [10] AB

11 10 ] ] 11 10

FIGURE 1 14 (o) K-map with reduntant group (b) K-map without reduntant group.

Fig. 1.14(a) has a reduntant group. There are three pairs : Pair-1 (m, + ms) Pair-2 (ms + ms3)
Pair-3 (my; + mys ). Bur Pair 2 is a reduntant group as its all 1’s are marked by other groups.

With this reduntant group, the reduced expression will be ABC + BCD + ABD. For a
simpler expression, Reduntant Groups must be removed. After removing the reduntant group, we
get the K-map shown in Fig. 1.14(b).

The reduced expression, for K-map in Fig. 1.14(b), will be
ABC + ABD
which is much simpler expression.
Thus removal of reduntant group leads to much simpler expression.

Summary of all the rules for S-0-P reduction using K-map

1. Prepare the truth table for given function.

2. Draw an empty K-map for the given function (i.e., 2 variable K-map for 2 variable
function ; 3 variable K-map for 3 variable function, and so on).

3. Map the given function by entering 1's for the outputs as 1 in the corresponding
squares.
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4. Enter 0’s in all left out empty squares.
5. Encircle adjacent 1’s in form of octets, quads and pairs. Do not forget to roll the m,
and overlap. d

6. Remove reduntant groups, if any.
7. Write the reduced expressions for all the groups and OR (+) themn.

Example 1.33. Reduce F (a, b, ¢, d) =Xm(0, 2,7,8, 10, 15) using Karnaugh map.
Solution. Given F(a, b, c,d)=£m(0,2,7,8,10,15)
=My + My + My + Mg + Myg + Mys
m, =0000=A BC D m, =0010=A BC D
mg =1000=ABC D

m, =0111= ABCD
my, =1010 = ABCD mys =1111= ABCD

Truth Table for the given Mapping the given function in a

function is as follows : K-map, we get
A B € D F
0 g b 0 i g [00jCD [01]CD [111CD [10)CD
0 0 0 1 AB
0 0 1 0 1 — l |
0 0 1 1 [00] AB 1 0 0 1
0 1 0 0 0 | 3 2
0 1 0 1 _
0 1 1 0 [01]AB ° 4 ’ 5 ﬂ 7 ° G
0 1 1 1
1 0 0 0 1 [11] AB 0 0 U 0
1 0 0 1 12 13 15 14
1 0 1 0 1
1 0 1 1 [10) AB 1 l 0 0 1
1 1 0 0 _ 8 9 11 10
1 1 0 1
1 1 1 0
1 1 1 1 1

In the above K-map two groups have been marked, one Pair and One Quad.

Pair is m; + mys
and Quad is my +my + g +myg

for pair (m; +ms) is BCD as A is removed. Reduced expression fo!

Reduced expression
rtical corners /

quad (my + my + mg + My )is B D as for horizontal corners C is removed and for ve

is removed.
Thus final reduced expression is BCD + B D.
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Example 1.34. What is the simplified boolean equation for the function :
F(A BC D)=£(7,9,10,11,12,13,14,15) ?

Solution. Completing the given Karnaugh map by entering 0's in the empty squares, by numbering

the squares with their minterm’s subscripts and the: by encircling all possible groups, we get the
following K-map.

. . "\ _CD _
There is one pair, three quads \ [0)CD [01)CD [11]CD [10]CD
Pair-1 =m; + my ; A8 .

Quad-1 =my, +my + mys +my, [00] AB 0 0 0 0
Quad-2 =myy +mys +mg +my; ; —— 1 : 2

ad-3 =my; +
- ™ Thy ¥ Mhe + o AB| 0 0 (1) 0 m
Reduced expression for pair-1(m, + mys)is I

BCD, as ABCD(m;) changes to ABCD (ms) : . :

eliminating A. [11] AB ( 1 ., ) 1)
Reduced expression for Quad-1(my, + my,

+ms +my) is AB, as while moving across the

Quad, C and D both are removed because both are

_ _ [10] AB 0 1 1 1)
changing their states from complemented to 8 L_a;% 10
uncomplemented or vice-versa.

Reduced expression for Quad 2 (my; + mys + my + my;) is AD, as moving horizontally, C is
removed and moving vertically, B is removed.

Reduced expression of Quad-3 (mys + my, + my, +my) is AC as horizontal movement
removes D and vertical movement removes B.

Thus, Pair-1= BCD, Quad-1=AB, Quad-2=AD, Quad-3 = AC
Hence finai reduced expression will be BCD + AB + AD + AC.

Example 1.35. Obtain a simplified expression for a Boolean function F (X, Y, Z), the Karnaugh map
for which is given below :

[00] [01] [11) [10]

[0] 1 1

(1 1 1 |

Solution.
Completing the given K-map, Yz
We have 1 group which is a Quad i.e.,

™+ iy ks My oIx | o {1 1‘ 0
Reduced expression for this Quad is Z, as 0 1 3
moving horizontally from X YZ (m )to XYZ(my) Y
is removed (Y changing from Y to Y) and moving (11X 0 l 1 1 ]
vertically from m, to ms or my to m,, X changes to X, 4
thus X is removed.

<|
Ny

[00] 01NYZ [M1)YZ [101YZ

5] 7
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Example 1.36. Minimise the following function using a Karnaugh map:
FW,X,Y,Z)=Z2(0,4,8, 12)
Solution. Given function F(W,X,Y,Z)=£(0,4,8,12)
F=my + my + ng + my,
my=0000=W XY Z,
= = YZ __ _
my = 0100= WXY Z, \ 00jYZ [01YZ [1YZ [0z
S p— WX T T
my=1000=WXY Z, F | , [ |
,__ my = 1100= WXY Z [00) W X F oo o
?{?;‘ Mapping the given function on a K-map, i ! 2
XII we get B ' | \
Only 1 group is here, a Quad 1w x | ! 0 0 0 .
|
(mg +my +myy +mg) L | —
Reduced expression for this quad is Y Z, as wx || 1 0 0 0
while moving across the Quad W and X are |
removed because these are changing their states |
from complemented to uncomplemented or vice WX J 0 0 0
versa. , | y l

Thus, final reduced expression is Y Z.

Example 1.37. Using the Karnaugh technique obtain the simplified expression as sum of products for

the following map :
YZ
SE e o0 o m

Solution. Completing the given K-map, we get

. YZ
One group which is a Quad has been marked. 0)YZ [o1)YZ U1YZ [10)vZ
Quad reduces two variables. Moving [ [ [ [ ’
horizontally, Z is removed as it changes from Z to Z [0]X 0 | 0 l\ 1 1) |

and moving vertically, X is removed as it changes l |

from X to X. Thus only one variable Y is left. Hence '\ l: '\ ‘
Reduced S-O-P expression is Y. Thus F=Y  [1X ! 0 \l 0o | W
assuming F is the given function. ! 3

1.12.4 Product-of-Lum Reduction using Karnaugh Map

In P-O-5 reduction each square of K-map represents a Maxterm. Karnaugh map is just th
same as that of the used in 5-O-P reduction. For a function of n variables, map would represent”
squares, each representing a Maxterm.
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For P-O-S reduction map is filled by placing 0's in squares whose Maxterms lead to output 0.
Following are 2, 3, 4 variable K-maps for P-O-S reduction.

Y
\ oY [y I
X T | X

|

oy My

lﬁlXi 01X | X+Y) | (X+Y)

.

4
|

lﬂx! MX | X+Y) | (X+Y)
(b)

Z-variable K-map representing Maxterms.

YZ _ _ YZ
e 1Y+Z [01]Y+Z [11]Y+Z [0]Y+2
X

|
|
i
i
|

| S—

(a)

0] Y+Z [01)Y+Z [11]Y +Z [10]Y +2Z
ojx | [O]X | X+Y<Z | X4Y+Z | X+Y+Z | X+Y +2
[1])?1 11X anuz X+Y+Z | X+Y+Z | X4V +2Z

. 3 7 )

(c) (d)
3-variable K-map representing Maxterms

YZ YZ
wx\ [00] [01] [11] [10]ﬁ wx\ 0]Y+2Z [011Y+Z [(11]Y+Z [0]Y+2Z

| ] o ]

(00] : [0JW + X [W+XsY+Z | WaXtYsZ | WiXsV+Z | WaXai¥o2
|

o1 | [D1W +X (WX +Y+Z | WeX+Y+Z |WiX+Y+Z|WeX4Y 42
\

(1) : WX WX+ Y+Z|IWaXsY+Z|WaX+Y22Z WeX+Y +2
i
\

[10) I [10]V7+X WXsY+Z|WeXsyaz WaXeY+Z|WaXiY+2Z

i

(e)
4 variable K-map representing Minterms
FIGURE 1.15 2,3,4 variable K-Maps of P-O-S expression.

(f)

Again, the numbers in the squares represent Maxterm subscripts, Box with number 1

represents M, , number 6 box represents M, and so on. Also notice box numbering scheme is the same
le,0,1,3,2;4,57,6;12, 13,15, 14; 8,9, 11, 10.
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One more similarity in 5-O-P K-map and P-O-S K-map is that they are binary PTOgression
Gray code only. So, here also same Gray Code appears at the top.

But one major difference is that in P-O-S K-map, complemented letters represent 1’ and
uncomplemented letters represent 0’s whereas it is just the opposite in S-O-P K-map. Thus in the Fig. 115
(b), (d), (f) for 0’s uncomplemented letters appear and for 1’s complemented letters appear.

How to derive P-0-S boolean expression using K-map

Rules for deriving expression are the same except for one thing i.e., for P-O-S expression
adjacent 0’s are encircled in the form of pairs, quads and octets. Therefore, rules for deriving P-O-§
boolean expression can be summarized as follows :

1. Prepare the truth table for a given function.

2. Draw an empty K-map for given function (i.e., 2-variable K-map for 2-variable
function, 3-variable K-map for 3-variable function and so on).

3. Map the given function by entering 0s for the outputs as 0 in the corresponding
squares. (i.e., if Ms and M;; are 0’s then squares numbered 5 and 13 will be having
0’s).

4. Enter 1’s in all left out empty squares.

5. Encircle adjacent 0’s in the form of octets, quads, and pair. Do not forget to roll the
map and overlap.

6. Remove reduntant groups if any.
7. Write the reduced expressions for all the groups and AND (.) them.

Example 1.38. Reduce the following Karnaugh map in Product-of-sums form:

BC
[00] [01] (11] [10]

[0} 0 0 0 1

[1] 0 1 1 1

Solution. To reach at P-O-S expression, we'll have to encircle all possible groups of adjacer
0’s. Encircling we get the following K-map.

There are 3 pairs which are : BC B o B
Pair-1 =M, . M, ; A [001B+C [01)B+C [11]B+C [10]B +
Pair-2 = My . M, ;
Pair-3 =M, . M;. [o1A ‘(0 J L“ ] 0| \ 1
But there is one reduntant group also i.e., L ) ' ' ‘
Pair-1 (its all 0’s are encircled by other groups). [ A 0 4 1 1
Thus removing this reduntant pair-1, we have 4 { i__”

only two groups now.

Reduced P-O-5 expression for Pair-2 is (B + C), as while moving across pair-2, A changesit
state from A to A , thus A is removed.
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~ Reduced P-O-5 expression for Pair-3 is (A + C), as while moving across Pair-3 B changes to
B, hence eliminated.

Final P-O-S expression will be
(B+C).(A+C)
Example 1.39. Find the minimum P-O-S expression of

Y (A, BC D) =[] 13567, 10,14, 15)

Solution. As the given function is 4-variable function, we'll draw 4-variable K-map and then

put 0s for the given Maxterms i.e., in the squares whose numbers are 0, 1,3, 5, 6, 7, 10, 14, 15 as each ‘
square number represents its Maxterm. I

So, K-map will be

CD
f;;\\_mm0+o ©1Cc+D [11]C+D [10]C +D
oojase| (o [[o)| o)| 1
1

5 -
[01]1 A+B 1 k 0 0 P Ow
B 3

(1A+B | 1 1 (0 0
12 13 15 14
[10)A+B 1 1 1 oi

Encircling adjacent 0's we have following groups :

Pair-1 =M, . M, ; Pair-2 =M, . M ;
Quad'1=M1.M3.M5.M7 7 Quad‘2=M7.M6.M15.M]4

Reduced expressions are as follows :

For Pair-1, (A+ B+ C) (as D is eliminated : D changes to D)

For Pair-2, (A +C + D) ( B changes to B ; hence eliminated)

For Quad-1, (A+ D) (horizontally C and vertically B is eliminated as C, B

are changing their states)
For Quad-2, (B +C)

(horizontally D and vertically A is eliminated)
Hence final P-O-S expression will be

Y (A, B, C, D)=(A+B+C) (A+C+ D) (A+ D) (B+C)
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