KRISHNAGAR ACADEMY HALF-YAERLY (PHASE-II) EXAMINATION **CLASS-XII**

SUBJECT-MATHEMATICS

FULL MARKS: 50

Attempt all questions

(4x1=4)

a) If $\tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}$, then the value of y + x + yx is (ii) $\sqrt{3}$ $(iii) \frac{1}{\sqrt{3}}$ (iv) −1 (i) 1

b) If A and B are square matrices of the same order, then the value of (A+B)(A-B) is equal to

(i) $A^2 - B^2$ $(ii)A^2 - BA - AB - B^2$ (iii) $A^2 - B^2 + BA - AB$ (iv) $A^2 - BA + B^2 + AB$ c) The value of $\int \frac{1}{e^x + e^{-x}} dx$ is (i) $\tan^{-1}(e^{-x}) + c$ (ii) $\tan^{-1}(e^{x} - e^{-x}) + c$ (iii) $\tan^{-1}(e^{x}) + c$ (iv) $\tan^{-1}(e^{x} + e^{-x}) + c$ (iv) $\tan^{-1}(e^x + e^{-x}) + c$

d) The order and degree of the differential equation $xy \frac{d^2y}{dx^2} + x \left(\frac{dy}{dx}\right)^2 - y \frac{dy}{dx} = 0$ are

(i) Order 2, Degree 1 (ii)Order 1, Degree 1 (iv) Order 2, Degree 2 (iii) Order 1, Degree 2 **Question 2.** (2)

Evaluate: $\int \tan x \tan 2x \tan 3x \, dx$

Question 3.

Question 1.

Prove that
$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$
 (2)

Question 4.

If $A = \begin{bmatrix} 5 & a \\ h & 0 \end{bmatrix}$ and A is symmetric matrix, show that a = b(2)

Question 5.

Find the point on the curve $y = (x - 3)^2$, where the tangent is parallel to the line joining (4, -1) and (5, 0). (4)

Question 6.

Find the intervals on which the function $f(x) = \frac{x}{x^2+1}$ is strictly increasing and/or strictly decreasing. (4)

Question 7.

Evaluate:
$$\int \tan^{-1} \sqrt{x} \, dx$$
 (4)

Question 8.

Solve the differential equation $\sin^{-1}\left(\frac{dy}{dx}\right) = x + y$ (4)

Question 9.

Solve the system of linear equation x - 2y = 10, 2x - y - z = 8, -2y + z = 7 (6) **Question 10.**

Solve the equation for x: $\sin^{-1}\frac{5}{x} + \sin^{-1}\frac{12}{x} = \frac{\pi}{2}, x \neq 0$ (6)

Question 11. Evaluate: $\int_0^{\pi/4} \log(1 + \tan x) dx$

Question 12.

Show that the rectangle of maximum perimeter which can be inscribed in a circle of radius 10 cm is a square of side $10\sqrt{2}$ cm. (6)

(6)