KRISHNAGAR ACADEMY
 HALF-YEARLY (PHASE - II) EXAM' 2020-2021
 CLASS -XI SUB. - MATHS F.M. - 60

Attempt all the questions from the Group-A and either Group-B or Group-C
 GROUP-A (50 Marks)

Q. $1 a) R$ is a relation on Z defined by $R=\{(a, b): a, b \in Z, a-b$ is an integer $\}$.

Find the domain and range of R .
b) Prove that $\tan \left(\frac{\pi}{3}+x\right) \tan \left(\frac{\pi}{3}-x\right)=\frac{2 \cos 2 x+1}{2 \cos 2 x-1}$
c) If $\cos (\theta+\varphi)=m \cos (\theta-\varphi)$, then prove that $\tan \theta=\frac{1-\mathrm{m}}{1+\mathrm{m}} \cot \varphi$.
d) If $x+i y=\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{3}-\left(\frac{1-\mathrm{i}}{1+\mathrm{i}}\right)^{3}$, then find (x, y).
e) If the sum of the certain number of terms of the A.P. $25,22,19, \ldots \ldots$ is 116 , find the last term.
f) The first term of a G.P. is 729 and $7^{\text {th }}$ term is 64 . Find the sum of first 7 terms of the G.P.
g) If the lines $2 x+y-3=0$ and $5 x+k y-3=0$ and $3 x-y-2=0$ are concurrent, find the value of k .
Q. 2 Express the function $f: A \rightarrow Q$ such that $f(x)=\frac{2 x-1}{3 x+2}$, where $A=\{x: x \in Z,|x| \leq 4\}$ as the set of ordered pairs and hence find its range.
Q. 3 If $\tan (\theta+\varphi)=m \tan (\theta-\varphi)$, then prove that $\sin 2 \theta=\frac{m+1}{m-1} \sin 2 \varphi$
Q. 4 If $x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)=z \cos \left(\theta+\frac{4 \pi}{3}\right)$,then find the value of $x y+y z+z x$.

OR

If angle θ is divided into two parts such that the tangent of one part is k times the tangent of the other, and φ is their difference, then show that $\sin \theta=\frac{\mathrm{k}+1}{\mathrm{k}-1} \sin \varphi$
Q. 5 If $(x+i y)^{\frac{1}{3}}=a+i b$, where $x, y, a, b \in R$, show that $\frac{x}{a}-\frac{y}{b}=-2\left(a^{2}+b^{2}\right)$.
Q.6 In an A.P., if $\mathrm{p}^{\text {th }}$ term is $\frac{1}{\mathrm{q}}$ and $\mathrm{q}^{\text {th }}$ term is $\frac{1}{\mathrm{p}}$, prove that the sum of first pq terms

$$
\begin{equation*}
\text { is } \frac{1}{2}(p q+1) \tag{4}
\end{equation*}
$$

Q. 7 Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ be the geometric mean between a and b. [4]

OR
How many words can be formed by using the letters of the word INDEPENDENCE in which
i) the words start with P
ii) the words begin with I and end wih P.
Q. 8 Using Principle Mathematical Induction, prove that
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots \cdots+\frac{1}{1+2+3+\cdots \cdot+n}=\frac{2 n}{n+1}$.
Q. 9 Prove that the coefficient of x^{n} in the expansion of $(+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

OR
Show that the middle term of the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdots \cdots \cdots \cdot(2 n-1)}{n!}(-2)^{n}$.

GROUP - B

Attempt all questions

Q. 10 Find the coordinates of a point on the parabola $y^{2}=8 \mathrm{x}$ whose focal distance is 4 .

OR
Prove that the equation of the chord joining the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ lying on the
Parabola $y^{2}=4 a x$ is $\left(y-y_{1}\right)\left(y-y_{2}\right)=y^{2}-4 a x$.
Q. 11 If l and l^{\prime} be the lengths of segments PS and $\mathrm{P}^{\prime} \mathrm{S}$ of a focal chord PP^{\prime} of a parabola

$$
\begin{equation*}
\mathrm{y}^{2}=4 \mathrm{ax}, \text { then show that } \frac{1}{1}+\frac{1}{1^{\prime}}=\frac{1}{\mathrm{a}} \text {. } \tag{6}
\end{equation*}
$$

GROUP-C

Attempt all questions

Q. 12 Calculate the median of the following frequency distribution:
$\begin{array}{llllllll}\text { Class limits: } & 130-134 & 135-139 & 140-144 & 145-149 & 150-154 & 155-159 & 160-164\end{array}$
$\begin{array}{cllllllll}\text { Frequency : } & 5 & 15 & 28 & 24 & 17 & 10 & 1\end{array}$

Find the $7^{\text {th }}$ decile $59^{\text {th }}$ percentile from the following frequency distribution:

Marks	$:$	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students:	20	32	40	46	38	30	28	16	

Q. 13 The following is a frequency distribution:
[6]

Marks	$: 30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$

$\begin{array}{llllllll}\text { No. of students: } & 3 & 4 & 13 & 24 & 40 & 30 & 6\end{array}$

Find Mean, Median and Standard Deviation.

